THz QCL sources for operation above cryogenic temperatures

Mikhail Belkin

Department of Electrical and Computer Engineering University of Texas at Austin

IQCLSW, Monte Verita, Switzerland 2008

Need for semiconductor THz source (

- Spectroscopy
- Local oscillator for THz heterodyning
- Remote sensing, screening, inspection, etc.
- THz frequency amplification

THz Quantum Cascade Lasers

Maximum operating temperature VS frequency

2008 data of Capasso, Colombelli, and Linfield groups

Upper laser state lifetime vs T

RT THz QCLs: very difficult

Upper state lifetime <2ps for temperature >200K This lifetime is similar to that in mid-IR QCLs BUT, THz QCLs have higher w/g losses and smaller injection efficiency

Nevertheless, no fundamental limit on RT operation

1. Investigate alternative designs, improve GaAs/AlGaAs quality, try different materials (InGaAs/AlInAs, Si/SiGe, AlGaN/GaN), lowdimensional systems (quantum dots, wires), etc.

2. Develop semiconductor THz sources that do not require population inversion across the THz transition

1. Investigate alternative designs, improve GaAs/AlGaAs quality, try different materials (InGaAs/AlInAs, Si/SiGe, AlGaN/GaN), lowdimensional systems (quantum dots, wires), etc.

2. Develop semiconductor THz sources that do not require population inversion across the THz transition

Difference Frequency Generation

Difference-frequency generation (DFG) occurs in a medium with second-order nonlinear susceptibility $\chi^{(2)}$

THz QCL source using intra-cavity DFG

- Dual-frequency mid-infrared QCLs with $\chi^{(2)}$
- THz radiation is generated via intra-cavity DFG
- Widely tunable THz source at RT

Challenges for intra-cavity THz DFG

$$I(\omega_{THz}) \propto |\chi^{(2)}|^2 I(\omega_1) I(\omega_2) \times l_{coh}^2$$

$$l_{coh}^{2} = \frac{1}{\left(\left(k_{1} - k_{2} - k_{THz}\right)^{2} + \left(\alpha_{THz}\right)^{2}\right)}$$

Need giant $\chi^{(2)}$

Giant $\chi^{(2)}$ in quantum wells

$$\chi^{(2)} = N_e \frac{e^3}{\hbar^2 \varepsilon_0} \times \sum_{n,n'} \frac{z_{1n} z_{nn'} z_{n'1}}{(\omega - \omega_{nn'} + i\Gamma_{nn'})} \left(\frac{1}{(\omega_1 + \omega_{n'1} + i\Gamma_{n'1})} + \frac{1}{(-\omega_2 - \omega_{n1} + i\Gamma_{n1})} \right)$$

Active region design

 $\chi^{(2)}$ -section design

Bound-to-continuum active region for $\lambda \approx 9 \mu m$

[Faist et al. IEEE JQE (2002)]

$\chi^{(2)}$ -section design

 $\chi^{(2)}$ -section design

$\chi^{(2)}$ -section design

$\chi^{(2)}$ -section design

 $\chi^{(2)}$ -section design

Waveguide design

Device performance: mid-IR

25-µm-wide, tapered to 50-µm-wide, 2-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz).

Device performance: mid-IR

25- μ m-wide, tapered to 50- μ m-wide, 2-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz).

Product of the pump powers

25- μ m-wide, tapered to 50- μ m-wide, 2-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz).

Terahertz emission 80K

25- μ m-wide, tapered to 50- μ m-wide, 2-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz).

- Peak positions agree with mid-IR data
- Red-shift with temperature can also be observed in mid-IR data
- THz DFG signal observed up to room temperature

25-µm-wide, tapered to 50-µm-wide, 2-mm-long, back facet HR coating, + Silicon lens Testing in pulsed mode (60ns pulses at 250kHz).

Conversion efficiency ~5 μ W/W²

Conversion efficiency: analysis

$$W_{\text{THz}} \approx \frac{\omega^2}{8\varepsilon_0 c^3 n_{\text{eff}}^{\omega} n_{\text{eff}}^{\omega_1} n_{\text{eff}}^{\omega_2}} \times \frac{\left|\chi^{(2)}\right|^2}{S_{\text{eff}}} W_1 W_2 \times l_{\text{eff}}^2$$

 S_{eff} , I_{eff} , refractive indices are known from waveguide calculations:

 $n_{\rm eff} \approx 3$, $I_{\rm eff} \approx 70 \ \mu m$, $S_{\rm eff} \approx 1800 \ \mu m^2$

Estimate $\chi^{(2)}$ using electron density in upper laser state from gain=loss condition: $\chi^{(2)}\approx 3x10^4\,\text{pm/V}$

Uncertain parameters:

Mid-IR lasing in higher order lateral modes

THz wave out-coupling efficiency from QCL waveguide (~30%?)

Conversion efficiency: analysis

$$W_{\text{THz}} \approx \frac{\omega^2}{8\varepsilon_0 c^3 n_{\text{eff}}^{\omega} n_{\text{eff}}^{\omega_1} n_{\text{eff}}^{\omega_2}} \times \frac{\left|\chi^{(2)}\right|^2}{S_{\text{eff}}} W_1 W_2 \times l_{\text{eff}}^2$$

 S_{eff} , I_{eff} , refractive indices are known from waveguide calculations:

 $n_{\rm eff} \approx 3$, $I_{\rm eff} \approx 70 \ \mu m$, $S_{\rm eff} \approx 1800 \ \mu m^2$

Estimate $\chi^{(2)}$ using electron density in upper laser state from gain=loss condition: $\chi^{(2)}\approx 3x10^4\,\text{pm/V}$

Uncertain parameters:

Mid-IR lasing in higher order lateral modes

THz wave out-coupling efficiency from QCL waveguide (~30%?)

Theoretical efficiency: $W_{THz}/(W_1 \times W_2) \sim 30 \ \mu W/W^2$

Experiment (corrected for the collection efficiency): ~ 5 $\mu W/W^2$

Need for surface extraction of DFG

Edge emitting THz DFG is not efficient

Only a small section $\sim I_{coh}$ contributes to THz DFG output

Surface-emitting scheme to boost THz power

The whole device contributes to THz DFG

Device design for surface emission

THz radiation is produced by P⁽²⁾ P⁽²⁾($\omega_{THz} = \omega_1 - \omega_2$)~ $\chi^{(2)}E(\omega_1)E(\omega_2)e^{i(k_1-k_2)y}$

For efficient vertical outcoupling, we need the grating k-vector $k_{gr}=k_1-k_2$

Surface emission

Edge-emission mid-IR spectrum

Surface-emission THz spectrum

25-µm-wide, with second order grating for THz DFG, 1-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz) with 3.5A current pulses at 80K.

Power output

Edge emission mid-IR power

Surface emission THz power

25-µm-wide, with second order grating for THz DFG, 1-mm-long, back facet HR coating. Testing in pulsed mode (60ns pulses at 250kHz) with 3.5A current pulses at 80K.

Future improvements

- Improve waveguide designs for larger I_{coh}
- Improve active region designs for higher $\chi^{(2)}$
- Improved surface emission for more outcoupling
- Mode-locking for higher peak intensity

Acknowledgements

People

Harvard: Federico Capasso, Christian Pflügl, Jonathan Fan, Qijie Wang,

Laurent Diehl, Sahand Hormoz.

Texas A&M: Alexey Belyanin, Feng Xie

University of Leeds: Edmund Linfield, Suraj Khanna, Mohamed Lachab, Giles Davies

University of Paris: Raffaele Colombelli, Yannick Chassagneux

ETH-Zürich: Jérôme Faist, Milan Fischer, Andreas Wittmann

Funding

AFOSR FA9550-05-1-0435

Postdoc opportunities

University of Texas, Austin

City of Austin

mbelkin@ece.utexas.edu http://www.ece.utexas.edu/~mbelkin/