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Quantum Cascade Laser

1994: Bell Labs
T .. = 125K (pulsed), P_.. = 10mW, A =4.26pm
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QC Laser Highlights

Wavelength agility

— layer thickness determines emission wavelength: 3.4 to 24 um (AllnAs/GalnAs) and 60 to
250 um (AlGaAs/GaAs); shortest A=2.9 um (in Sb based QCLS)

- Multi-wavelength and ultrabroadband operation
- Intracavity nonlinear optics gives further flexibility ( e.g. Thz DFG)
- Broad single mode tuning: broad gain spectrum and external cavity; DFB QLC Chip

High optical power at RT: several W pulsed, 1.5 W cw with 10% WPE; record WPE 20%
— cascading re-uses electrons

Excellent temperature operation: high T, due to parallel subbands and optical phonon limited lifetime
Narrow linewidth (ideally Schawlow-Townes limited) < 100 kHz; stabilized < 10 kHz

Ultrafast: high speed modulation/cut off frequency due to absence of relaxation oscillations
Reliability, reproducibility, long-term stability

Applications: trace gas analysis, combustion & medical diagnostics, environmental monitoring,
military and law enforcement

Commercialization: Alcatel-Thales, Hamamatsu, Daylight Solutions, Pranalytica, Alpes
Lasers, Maxion, Laser Components, Nanoplus, Cascade Technologies, Q-MACS, Fraunhofer
Institute, PSI, Aerodyne, etc. and a growing number of foundries growing QCL wafers



Trends in QCLs

Band-structure engineering and waveguide design as a driving forces for
major performance improvements will have diminishing returns since
QCls are a maturing technology at least in the mid-infrared

Major improvements can still be expected in areas such as wall plug-
efficiency, temperature performance (for THz QCLS), high power single
mode operation and broadband single mode tunability.

They will mostly emerge from a combination of smart engineering
solutions, incremental design improvement, increased physical
understanding at the level of transport, improved modeling

Ultimately market penetration beyond niche areas will be the measure of
QCL success: there are encouraging signs as larger companies
(Hamamatsu, Corning, etc) are getting into the act. Killer application is
needed (breadth analysis?) with prices down to <1$ K per unit

In this talk | will explore research opportunities other than the above
related to fairly unexplored areas in materials, physics, devices, systems,
atmospheric sciences and climate change



Challenges and Frontier topics

Materials: High performance nitride based QCLs for the near
Infrared and the THz?

Physics:
QED effect on electronic transport?

Fundamental understanding of short time scale non linear
dynamics of QCLs: are ultrashort pulse modelocked mid-ir
lasers and optical combs possible?

Devices: Beam-Engineering of QCLSs: increasing the
functionality with plasmonics and metamaterials?

Systems:
New high brightness spectrometers
Instrumentation for climate change studies



High temperature nitride based QCLs for the |
near infrared? Rt

*Fighting low oscillator strength, broad transitions and short lifetimes

with low loss to achieve reasonable thresholds
*Take advantage of low free carrier loss and high LO phonon energy (90

meV) for high slope efficiency and high T,
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Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich

Temperature performance of A= 1.5 um Nitride QCL
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Light-versus current characteristics of 1.5 um
wavelength Nitride Lasers

Light-current characteristics
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Ultrafast laser? No!

— Inversion quenched very fast (< 200fs)

— However, lifetime of photon in the cavity is very
long because of very low losses

C
1 _
T

J. Faist



THz QCL temperature performance

THz QCL summary: 2002-2008

200
180 L © Belkin et al. (2008) T =h/kg
O
160 |- =
140 - =/ B O .
120 og,/ -
B O
g | o/ - fg .
s 100 ¢%m B m Y8
|_
80 @9 3;. o o O
O
60 e 3 O
40 |- \To/ﬁ lg
dr B-field ®
0 | | | | |
0 1 2 3 4 5 6

Frequency (THz)



Temperature dependence of threshold in THz QCLs: evidence of

~—J

H. Luo, APL, 90, 041112, 2007
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Frontiers of QCL Physics

¢ Tunneling, QED effects and transport: are QED effects
observable in transport ?

¢ Fundamental understanding of short time scale
dynamics of QCLs: are ultrashort pulse modelocked
mid-ir lasers and optical combs possible?



Cavity QED with intersubband polaritons
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Tunnelling Into cavity polariton states
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Selective tunnelling into polariton states
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Electric filed tuning of polariton luminescence
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PHYSICAL REVIEW A 75, 031802(R) (2007)

Coherent instabilities in a semiconductor laser with fast gain recovery
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Active Mode Locking of QCLs
(Harvard, MIT, H.C. Liu)

Modulation scheme

2 photon QWIP
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Active Mode Locking in QCLs
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Subwavelength photonics with semiconductor lasers
(edge emitting and surface emitting)

Can we use sub-wavelength photonics (plasmonics and metamaterials) to
advance the state of the art of semiconductor lasers? Solve some major
problems in laser technology? new lasers sources?

Facet engineering to achieve enhanced performance and/or new
functionalities in the near- and far-field? Can we design semiconductor
lasers with “arbitrary” wavefront (beam engineering: high collimation, super
focusing, “cork screw beams). control of polarization, beam steering with a
single laser?

Low divergence semiconductor lasers, Polarization control
New fabrication techniques for large area patterning

We have used QCLs as a platform to demonstrate these concepts



Plasmonic collimator for low divergence edge emitting lasers
( N. Yu et al; Hamamatsu Photonics)

groove

slit
insulating
dielectric

grating <
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All the parameters optimized for beam collimation: s, A, w, h, d;, and d.,.
N. Yu et al. Nature Photonics, September 2008

laser polarization




Physics of plasmonic collimator

_ SP modes of the grating
Second order grating structure, shown is the

distribution of |E-field|

L QC laser
4“"““’» T active region
=2n/A SP
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Second order grating ensures emission normal to the facet

Aperture designed for maximum coupling of radiation to surface plasmons
Small divergence arises from coherent scattering (interference) by the grating
grooves into the far field (beaming or antenna effect)



Experimental results: device with
grooves cut into the semiconductor

N |

Device A
A=9.9 um QCLs
Scale bars
50 pm
1.0
0.8 Device B
506
vertical far- %M .
field power § '
distribution of °2
the i
unpatterned o
lasers o
gO.E
804
:
0.2
0.0

Angle (degree)

experiment . simu
p . experiment .
Z00m-1n Z00om-1n
1.0 1.0 1.0
0.8 0.8
0.8
T
=064 5086
i 2.9° s 2.6°
] ]
~ 0.6 1 z H
‘% o 0.44 0 04
§ 0.4 4 0.24 4 0.2
0.0 v . . 0.0 - . -
0 [ 10 | 0 5 10
0.2+ Angle (degree) H Angle (degree)
00 T z T "‘ ..‘ T T T T T v |
-60 -40 -20 0 20 40 60
. t Angle (degree) . 1 t_
experimen . simuliation
p . experiment .
Zoom-=11n Zo.om-=11
1.0 1.0 1.0
0.84 0.8
0.8
T 064 S 08
i 2.4° el 2.2°
] ]
~ 0.6 1
E [% 0.4 \Jr é 0.4
L;C% 0.4 0.2 g 0.2
0.0 r r v 0.0 v . .
- 0 5 10 5 0 5 10
0.2 5 Angle {degree) Angle (degree)
0.0 T T T T T T T < s R
-80 -60 -40 -20 0 20 40 60 80

Angle (degree)



Low vertical divergence QCLs
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2D plasmonic collimation: original device

SEM image of the laser facet

Measured far-field mode profile
Intensity
(normalifed)

active region

substrate

0 20

Hamamatsu MOCVD-grown BHT device FWHM divergence angles:
A=8.06 um 0, =740
9”2420

( N. Yu et al; Hamamatsu Photonics)



SEM image of a fabricated device (A=8.06 um)

2D plasmonic collimation: far-field mode profile

Aperture grating groove groove radius of the
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2D plasmonic collimation: LI characteristics at different aperture size
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Rotating the linear polarization of a QCL

light polarization .
in the waveguide front view

active region

}
insulating
dielectric ;‘/
l.".-i

o
-

grating<

output laser polarizatio/

* The plasmonic polarizer can rotate the linear polarization
direction of the original laser to an arbitrary angle,
determined by the orientation of the grating 6.

* I" satisfying the condition for second order grating.



Initial experimental results: 45° linear polarization

Measured 2D far-field power
distribution of the device

90° T

Red star: experiment 10y

Blue: calculation

45-degree linear
polarization
a mid-infrared
detector detects the

: 1800
power of the main —t
lobe of the far-field
mode profile while a
polarizer is rotated
in front of the

detector.

20+
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Challenge: make a circularly
Polarized QCL




Self-assembled negative
Index layer

Negative index or hyperbolic metal-dielectric
materials may be directly applied to a laser
facet to get super-focusing of output light

New patterning techniques needed to create “Smart
Surfaces”
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System Challenges

¢ New broadband, portable QCL spectrometers

that will outperform FTIR spectrometers in
brightness and resolution

¢ Killer application in sensing?

¢ Instrumentation for climate change studies



Broadband QCL Spectrometer on a Chip

Technical Approach
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Broadband QCL Spectrometer on a Chip

T

100 microns
|

 DFB laser devices fabricated

 array of 32 DFB lasers on a single
chip

« computer control and selective
firing of lasers in array using
custom-built electronics board




Spectrometer wavelength coverage

) L] L} L] L
1140 1120 1100 1080 1060
wavenumbers (1/cm)

32 wavelengths from 1060 to 1150 cmtin array
Pulsed operation (80kHz, 50ns) at room temperature



ahsorbance

Application: Absorption Spectroscopy
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lens
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« absorption of isopropanol (blue), methanol
(green) and acetone (red) measured with QCL
array (points) and conventional FTIR (solid

line)




Mid-IR QEPAS based NH; Gas Sensor Architecture

Laser Housing
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Interface for Real-time Breath NH; Analyzer

3

4 B
Water cooler for . i
N2 flow system TEC with heater TEC - AmmOIlla ][I:X Ligntwar
for QCL housing exchange and water > Power supply r —€ T curTE
pump Sensor Source
' > > +
N2 —Pp | | 1. QCL, 1046.46 cm!
2. Collimating and —— CEU
COz —p | 3 focusing optics Eaa
; 3. Photoacoustic cell
2 ppm NH3 ——> _ (pressure 110 Torr) +
' 2. Flow meter
—
| Switching 3. Up-stream presure SRS
I S-way valve controlller > Lock-in
| 4. Internal heater Amplifier
=l
Mouth Piece — - \
with a pressure ; e ) YY
meter and expiratory |Y| Special 2-way
resistance valve
Exhaust
| < ,
Exhaust \
Diaphragm -
Pump - g

JOHNS HOPKINS liZZ%/oY

N I W E-R & 1I'Y X

TECHNOLOGI/ES, INC.



Climate change: can

we help?

(Good reading material: the Revenge of Gaia by J. Lovelock)

“Atmospheric Carbon Dioxide
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Effects of Sea level rise

1 Am Sea Level Rise L " -.:'I.- -
= = h e =
| Y il

Figure 1 — The Gulf coast of the United States

shown 1n 1ts present state (top panels) and with 3 m
of sea level nise (bottom panels). Preventing a
catastrophe of this magmitude will requare

disciplined swvnergyv between science. technologoy.
and public policy.



One Example of QCLs in the Field:

Measuring Tracers on a UAV

-------------------------------------------------------------------------

: In order to make in situ measurements of

: trace gases over a broad area, UAVs could
: be used. Because of their size, stability,

: and low power consumption, QCLs are

: ideally suited to UAV environments.

B e e s TS T e = e e

Anderson group, Harvard

Herriott Cell Detectors
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Integrated Cavity Output Spectroscopy (ICOS) In the

|
MCT

| | ICOS Optical Cavity| |

| 1

Light from a CW QCL is coupled into a high finesse
cavity where it makes thousands of trips before escaping.
Our ICOS instrument achieves a pathlength of 4 km using
mirrors that are just 1 m apart.

Anderson group, Harvard

Field

The instrument is loaded into the belly of

: NASAs WB-57 each morning. The plane flies
: through the upper troposphere and lower

: stratosphere.

The pilot need only flip a switch to turn on the
: ICOS instrument. All control circuits and data
: acquisition are automated.



Probing aerosols with LIDAR

Atmospheric aerosols are important for several reasons:

¢ They transport nonvolatile material such as soot and dust, thereby
affecting tropospheric air quality

¢ They serve as cloud condensation nuclei, strongly influencing the
atmospheric chemistry and radiative balance of the planet

¢ NASA mission will harness recent developments in Light Detection and
Ranging (LIDAR) to examine the aerosol-cloud system from space.

¢ Although the strong absorption of aerosol particles in the mid-IR makes
this spectral region an attractive choice for aerosol LIDAR from ground
stations, UAVs, and satellites, the current lack of high power single
mode and collimated light sources has so far been a limiting
factor. While ready laser collimation is desired for any application,
it is especially important in LIDAR applications where propagation
distances of hundreds of kilometers are common.



Proposed Altair

Pressure
Temperature
w Telemetry/GPS

Cloud/Particle
LIDAR
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R -bn;:..zn- —
Tracer Measurements

' Radical Measuremen
Methane (DFG/Herriott) TOH (Ti:Saph/LIF)
N20 (QC/Herriott) HO2 (Ti:Saph/LIF) el

Carbon Dioxide (DFG/Herriott) NO> (Ti:Saph/LIF)
Carbon Monoxide (QC/Herriott)  cjO (RF)
Formaldehyde (Fiber/CRDS) BrO (RF)
Formaldehyde (Fiber/LIF) 10 (Tl
Water (NIR DFB/Herriott) N[oN@ Requirements
Total Water (NIR DFB/Herriott)
Water (Lyman Alpha) « single mode
Total Water (Lyman Alpha) 9

Ozone (UV Absorption) * high directional laser beam preferred

* high (pulsed) output power



Master Oscillator Power Amplifier
for high power single mode emission
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Far field intensity of MOPA
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