Fundamental of QCL: active regions

J. Faist, ETHZ, Switzerland

Outline

- QCL as an example of quantum engineering
 - A small look at history of the key ideas
 - Computing energy states
 - Rate equations and the parameters
 - Active region optimization
 - Resonant tunneling in QCLs

Superlattice – Bloch oscillator

- Original proposal
 - Esaki and Tsu, IBM JRD **14**, 61 (1970)
- Gain predicted in the semiclassical model
 - Ktitorov et al., Fiz.tverd.Tela., 13, 2230, (1971), Ignatov and Romanov, Phys. Stat. Sol. B73, 327, (1976)

Resonant/non-resonant tunneling

DOPED

1971: R. Kazarinov and R. Suris propose using intersubband transitions in a biased superlattice for light amplification

R. F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

1986-93: Proposals for QCL's using resonant tunneling in superlattices:F. Capasso et al, JQE (1986)H. C. Liu et al, JAP (1988)

UNDOPED AL Go As - Go As

FIG. 1. Upper part: conduction-band edge profile of the proposed device under no bias. Lower part: biased device in operation. Heavily doped contact layers at either ends of the structure are hached to show the Fermi seas. Photon (hv) emission processes occur in the wide wells.

DOPED

New ideas:

- Energy states by quantum confinement
- Lifetime engineering by tunneling
- Electrical injection
- Missing:
 - electrical stability
 - Better extraction
 - Waveguides

Electrical stability

Population inversion is obtained at an unstable point of the I-V curve !

R.F. Kasarinov and R. A. Suris, Soviet Physics (1971)

First intersubband luminescence

- Emission observed in the Far-Infrared

M. Helm et al, PRL **63**, 74 (1989)

First quantum cascade laser

1994: First intersubband laser (quantum cascade laser) is demonstrated in Bell Labs Tmax = 125K (pulsed), Pmax = 10mW, $\lambda = 4.26\mu m$

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A.L. Hutchinson, A. Y. Cho, Science 264, 553 (1994))

Outline

- A small look at history
- Computing energy states
- Rate equations and the parameters
- Active region optimization
- Injection mechanism: the Kazarinov and Suris model

Active region: electrons interacting

Intersubband transition in QW's: textbook 1D potential

Envelope function approximation: the wavefunction is the product of an envelope function and the Bloch periodic part

 $\mid \Psi > = \mid \mathsf{f}_{\mathsf{env}} > \mid \phi_{\mathsf{Bloch}} >$

Matrix elements involve mostly the envelope part

- Electron wavelength (~10nm) "averages" the interface (0.3nm)
- Charges are free in the plane -> no Coulomb charging effects
- Dominant non-radiative scattering are one particule effect

Optical transitions in QW

Optical transitions in QW

If one is only interested in the conduction band part, one can reduce the hamiltonian with an "effective" valence band as

$$\mathbf{H} = \begin{bmatrix} E_c(z) & \frac{p_{cv}}{m_0} p_z \\ -\frac{p_{cv}}{m_0} p_z & E_v(z) \end{bmatrix}$$

with $p_{cv} = i \sqrt{m_0 E_p / 2}$ and Ep being the Kane energy (~ 20eV in usual III-V's)

Matrix elements and energies

The matrix element for optical transitions is

$$P_{if} \quad \left\langle \phi^{i}{}_{c} \middle| p_{z} \frac{m_{0}}{m(E_{i},z)} \quad \frac{m_{0}}{m(E_{f},z)} p_{z} \middle| \phi^{f}_{c} \right\rangle$$

with _c solution of the one- dimentional equation

$$p_{Z} \frac{1}{2m(E,z)} p_{Z_{C}} + E_{C}(z) = E_{C}$$

and the energy-dependant effective mass is

$$m_0(E,z) = m^*(1 + \frac{E(z)}{E_c - E_v})$$

Outline

- A small look at history
- Computing energy states
- Rate equations and the parameters
- Active region optimization
- Injection mechanism: the Kazarinov and Suris model

Electron transport and gain

 $H = \frac{P^2}{2m} + V_{crystal} + V_{heterostructure} + V_{field} + H_{e-phonon} + H_{e-photon} + H_{scatt}$

Rate equations in the basis of the electronic states (Perturbation and independent Electrons)

Rate equations

Atomistic model captures nevertheless key elements

$$\frac{dn_3}{dt} = J/q_0 - n3/\tau_3 - gS(n_3 - n_2)$$

$$\frac{dn_2}{dt} = n_3/\tau_{32} - n_2/\tau_2 + gS(n_3 - n_2)$$

$$\frac{dn_1}{dt} = n_3/\tau_{31} - n_1/\tau_1$$

$$\frac{dS}{dt} = \frac{c}{n_g}(g(n_3 - n_2) - \alpha_{tot})S + \beta n_3/\tau_{spon}$$

All the population is lumped together in k=0 state!

Lifetimes: Fermi's golden rule

$$\frac{\hbar}{2\tau\pi} = \sum_{f} |\langle \psi_i | V(r) | \psi_f \rangle|^2 \delta(\epsilon_f - \epsilon_i)$$

Optical phonon scattering rate

Fermi's golden rule, Froelich interaction

Scattering Rate:
$$\frac{1}{\tau_i} = \frac{m^* e^2 \omega_{LO}}{2\hbar^2 \epsilon_P} \sum_f \int_0^{2\pi} d\theta \frac{I^{ij}(Q)}{Q}$$

Form factor

$$I^{ij}(Q) = \int dz \int dz' \phi_i(z) \phi_j(z) e^{-Q|z-z'|} \phi_i(z') \phi_j(z')$$

Using
$$\epsilon_P^{-1} = \epsilon_\infty^{-1} + \epsilon_s^{-1}$$
 $Q = \sqrt{k_i^2 + k_f^2 - 2k_i k_f \cos \theta}$

P. J. Price, Surface Sience 113, 199 (1982); R. Ferreira and G. Bastard Phys. Rev. B 40, 1074 (1982) IQCLSW Monte Verita 2008

Lifetime in a square well

How does one engineer lifetimes?

Diagonal transitions in real space: Reduction of matrix elements due to a decrease overlapp between wavefunctions.

Phonon momentum transfer:

Electron lifetime on excited subbands is a function $(\sim k_{//}^2)$ of the momentum exchanged with the lattice by the emission of an optical phonon.

Improves also the figure of merit

Engineering lifetimes (II)

Phase space in superlattice:

The probability of injecting the electron in the upper state of the lower miniband is very small. However, once there, the electron has a large phase space to scatter out of this state.

Architectures

Outline

- A small look at history
- Computing energy states
- Rate equations and the parameters
- Active region optimization
- Injection mechanism: the Kazarinov and Suris model

Active region design rules

- Avoid electron escape
- Avoid backfilling
- Discontinuity
- Injection efficiency
- Extraction efficiency/bottleneck effects

Active region optimization

Since τ_{isb} is fixed by the intersubband physics, the optimization will concentrate on minimizing the "parasitic" factors η_1 and τ_{esc}

First QC laser at 4.26µm

First QC laser structure based on three quantum wells: Big escape problem!

J. Faist et al., Science 1994

Vertical transition (1995)

Vertical transition, two quantum well active region Bragg reflection reduced escape $J_{th} = 2kA/cm^2 @ 10K$

(J. Faist et al., APL 1995)

 $^{-\,\Delta}$ is the activation energy for electrons into the lowest lasing state - "Backfilling" must be avoided

Semiconductor and semimetals, Vol 66

Injection efficiency

3QW vertical or anticrossed designs: optimize the overlap between the n=3 and injector levels Gain depends in a critical way in the ration between the current injected in the lower and upper subband

Superlattices: electrons injected in lower levels have a very low probability of being at an energy where they would reabsorb (phase space argument)

Three QW active region

Three quantum well active region High injection efficiency (large η_2)

 $J_{th} = 5-10 kA/cm^2 @300 K$

(J. Faist et al., APL 1996)

Chirped Superlattice (1998)

Chirped superlattice Efficient miniband extraction

 $J_{th} = 4.6 kA/cm^2 @300K$

(A.Tredicucci et al., APL 1998)

Bound-to-continuum

Bound-to-continuum

Efficient miniband extraction and high injection efficiency

(J. Faist et al., APL 2001)

Two phonons

Two phonon resonance Double resonant phonon extraction and high injection efficiency

(D. Hofstetter et al., APL 2001)

Maximum wallplug efficiency

Wallplug efficiency good figure of merit

$$\eta_{wp} = \frac{P_{opt}}{UI}$$

Slope efficiency

$$\frac{dP}{dI} = \eta_q N_p \frac{h\nu}{q} \frac{\alpha_m}{\alpha_m + \alpha_w}$$

"Voltage defect"

$$U = N_p(h\nu + \Delta_{inj})$$

Transition efficiency

$$\eta_q \approx (1 - \frac{\tau_{dn}}{\tau_{updn}})$$
Doping dependence
$$\alpha_w \approx n_{dop} \quad j_{max} \approx n_{dop}$$

Maximum wallplug efficiency in QCLs

J.Faist, Appl. Phys. Lett. (2007)

Outline

- A small look at history
- Computing energy states
- Rate equations and the parameters
- Active region optimization
- Resonant tunneling in QCLs

Resonant tunneling

Resonant Tunneling in Quantum Cascade Lasers

Carlo Sirtori, Member, IEEE, Federico Capasso, Fellow, IEEE, Jérôme Faist, Member, IEEE, Albert L. Hutchinson, Member, IEEE, Deborah L. Sivco, and Alfred Y. Cho, Fellow, IEEE

Limits at resonance

Jmax:
$$J_{\rm max} = e N_s \frac{2|\Omega|^2 \tau_{\perp}}{1 + 4|\Omega|^2 \tau_3 \tau_{\perp}}.$$

Weak coupling: $4|\Omega|^2 \tau_3 \tau_\perp \ll 1$ $J_{\text{max}} = (eN_s/2)4|\Omega|^2 \tau_\perp$ Strong coupling $4|\Omega|^2 \tau_3 \tau_\perp \gg 1$ $J = eN_s/(2\tau_3)$

Kazarinov-Suris model: single barrier Resonant tunneling current through a barrier (tight-binding): Kazarinov and Suris., Sov. Phys. Semicond. 6, 120 (1972) $J = q_0 n_s \frac{2\Omega^2 \tau_{\parallel}}{1 + \Delta^2 \tau_{\parallel}^2 + 4\Omega^2 \tau_{\parallel} \tau_2}$ L inj ()A lorentzian of FWHM: $+4\Omega^2 \tau_{\parallel} \tau_2$ < Ω Coupling frequency Δ Detuning $4\Omega^2 au_{\parallel} au_2 \gg 1 q_0 n_s$ τ_{\parallel} In-plane dephasing time

J_{max}

C. Sirtori, F. Capasso, J. Faist, A. Hutchinson, D. Sivco, and A. Cho, IEEE J. Quantum Electron. 34, 1722 (1998)

IQCLSW Monte Verita 2008

 τ_2 Scattering time of $|2\rangle$

Single quantum well emitting at 3.7 THz

Very similar to Rochat et al., Appl. Phys. Lett., Lett. 73, 3724 (1998)

Density matrix at injection and extraction on a tight-binding basis

G. Scalari, R.Terazzi et al., Appl. Phys. Lett., 91, 032103 (2007), R. Terazzi, unpublished (2008)

Experimental results

Laser action with extremely reduced threshold ($J_{th} < 30 \text{ A/cm}^2$) at 80 µm (3.7 THz) in a double metal configuration

G. Scalari, R. Terazzi et al., Appl. Phys. Lett., 91, 032103 (2007)

Couplings of the doublets as a function of electric field

Density Matrix derivation

- Elements: two states coupled by tunneling
- In-plane scattering

$$H_k^{ij} = \begin{pmatrix} \epsilon_{2k} & \hbar \Omega_{21} \\ \hbar \Omega_{12} & \epsilon_{1k} \end{pmatrix}^{ij}, \quad V_{kk'}^{ij} = \begin{pmatrix} V_{kk'}^{22} & 0 \\ 0 & V_{kk'}^{11} \end{pmatrix}^{ij}$$

- Density matrix equation $i\hbar \partial_t \hat{\rho} = [\mathcal{H}, \hat{\rho}]$
- Keep off-diagonal elements

Resonant tunneling current (ver II)

- Assume classical distributions in both subbands (same mass)

IV curves predictions

R. Terazzi, A. Wittmann, T. Gresch et al., submitted IQCLSW Monte Verita 2008

Also possible to include the light

One "free" parameter: waveguide roughness scattering 1cm⁻¹

R. Terazzi, A. Wittmann, unpublished

Conclusion

- Designability of intersubband
- In the mid-IR, "ab initio" computations are now possible

Collaborators

FIR team: G. Scalari, M. Amanti, C. Walther, J. Lloyd-Hughes MIR team: A. Wittmann, Y. Bonetti, T.Gresch, R.Terazzi, A. Bismuto, A. Hugi, A. Mohan

Growth Team: M. Beck, M. Fischer, V. Liverini