C. Jirauschek Institute for Nanoelectronics, TU München, Germany

var

18

a

1

Transport Modeling in

Cascade Lasers

Typical QCL Structure

Carrier Transport Simulation Methods

Quantum Cascade Ring Laser

Extended Maxwell-Bloch Equations

Field:
$$\frac{n}{c}\partial_{t}E = -\partial_{z}E - i\frac{kN\mu\Gamma}{2\epsilon_{0}n^{2}}\eta - \frac{1}{2}\ell(E)E$$
Polarization:
$$\partial_{t}\eta = \frac{i\mu}{2\hbar}E\Delta - \frac{\eta}{T_{2}}$$
Inversion:
$$\partial_{t}\Delta = \frac{\Delta_{p}-\Delta}{T_{1}} + \frac{i\mu}{\hbar}(E^{*}\eta - c.c.)$$

Rate Equations

Coherent Effects

Coherent Effects

Coherent instability = Rabi splitting

Simulation

Monte Carlo Solver

Boltzmann equation

Evaluation of Scattering Rates

Ensemble Monte Carlo Method

Ensemble Monte Carlo Method

Ensemble Monte Carlo Method

Monte Carlo Solver

Monte Carlo Simulation - Example THz QCLs

Carrier Transport Simulation Methods

Monte Carlo method

semiclassical; no quantum correlations (e.g., dephasing)

Non-equilibrium Green's function method (NEGF)

most general scheme for incoherent quantum transport

huge computational effort \Rightarrow neglect e-e scattering,...

Current Density for 3.4 THz Structure (100 K)

Electron Resolved Density of States

Optical Gain at Current Peak

Results (Summary)

Open two-level model

- Includes rate equation elements and quantum effects
- Description of optical instabilities/mode-locking in QCLs
 C. Y. Wang et al., Phys. Rev. A 75, 031802(R) (2007).

Monte Carlo simulation of QCLs

- Takes into account kinetic electron distribution
- Analysis of experimental results

C. Jirauschek et al., J. Appl. Phys. 101, 086109 (2007);
C. Jirauschek and P. Lugli, phys. stat. sol. (c) 5, 221 (2008);
C. Jirauschek and P. Lugli, J. Comput. Electron. 7, 436 (2008).

Quantum transport

- Includes quantum correlations/dephasing
- Allows for simulation of spectral gain

Acknowledgment te Carlo simulations: 1 P. Lugli, TUM Scamarcio group, Bari (experimental) Maxwell Bloch model: Kärtner group, M Capasso group, Harvard Further collaborations: Vogl group/Tillmann Kubis. **Financial support** Emmy Noether-Programm

Deutsche

Forschungsgemeinschaft

DFG