

IQCLSW 2008 September 16th, 2008

Instabilities and mode locking of quantum cascade lasers

F. X. Kärtner

Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

Acknowledgement:

V. Gkortsas , A. Gordon, Ch. Jirauschek, F. Capasso, Ch. Wang, L. Diehl, M. Belkin A. Belyanin, J. Faist

Supported by U.S. Army Research Laboratory W911NF-04-1-0253

Outline

- Motivation and Experimental Observations
- What's different about QCLs compared to other Lasers?
- A simple two-level model for QCLs
- Multimode Instabilities:

Spectral Hole Burning Risken-Nummedal-Graham-Haken Instability

- Actively Modelocked QCLs with Super Diagonal Gain
- Conclusion

- A frequency comb from a stabilized modelocked laser is equivalent to an enormous number (~100,000) of narrow band cw laser.
- Provides amplitude and phase across hundreds of nanometers, which can simultaneously probe multiple transitions.
- Offers a frequency resolution and accuracy > 10⁻¹⁵

First Evidence of Self Pulsation in QCLs

What can we learn from the data?

- 1. Many modes are lasing
- 2. The modes maintain coherence for ~1000th roundtrips.

R. Paiella *et al.*, Science 290, 1793 (2000)

Isolated Single Pulses ?

Stable Modelocking Needs Net Gain Window

Solid-State Lasers Semiconductor or Dye Lasers

Active Modelocking

Typical QCLs have 1ps-type gain recovery

Super-Diagonal QCLs \rightarrow 50ps gain recovery

Comparison of Different Laser Media

Medium	Upper State Lifetime T ₁	Dipole Decay T ₂	Gain sat. Intensity $I_s \sim T_1 \cdot T_2 \left \mu \right ^2$	Rabi Frequency $\Omega_{\text{Rabi}} = \frac{\mu E}{2\hbar}$	Mode Spacing 1/T _R
Solid State	1 µs-1 ms	10fs-1ps	~kW/cm ²	10-100 MHz	10-100 MHz
Semi- con- ductor	>1 ns	50 fs	~kW/cm²	10 GHz	10-100 GHz
QCL	0.5 – 50 ps	100 – 500 fs	~100 kW/cm²	1THz	10-20 GHz

Plii

rle

Dipole dynamics couples many longitudinal modes

7

Maxwell – Bloch Equations

Polarization

$$\dot{\rho}_{ab} = i\omega\rho_{ab} + i\frac{\mu E}{\hbar}\Delta - \frac{\rho_{ab}}{T_2},$$
 Diffusion

Inversion

Field

Inversion Grating

$$E(z,t) = \frac{1}{2} \Big[E_{+}^{*}(z,t) e^{-(i\omega t - kz)} + E_{+}(z,t) e^{i(\omega t - kz)} \Big] + \frac{1}{2} \Big[E_{-}^{*}(z,t) e^{-(i\omega t + kz)} + E_{-}(z,t) e^{i(\omega t + kz)} \Big]$$

$$\rho_{ab}(z,t) = \eta_{+}(z,t) e^{i(\omega t - kz)} + \eta_{-}(z,t) e^{i(\omega t + kz)}$$

$$\Delta(z,t) = \Delta_{0}(z,t) + \Delta_{2}(z,t) e^{2ikz} + \Delta_{2}^{*}(z,t) e^{-2ikz},$$

$$k = \frac{2\pi}{\lambda_{L}}$$

Saturable Absorber Effects

*€=*7|*E*²

Inversion Grating Decay Time

Grating Strength

Spatial Hole Burning Effects

Strong in QCLs

Ring Cavity: (Risken Nuhmedal Grahem & Haken Only)

No Standing Waves \rightarrow No Spatial Holeburning

RNGH Instability Threshold

Numerical Simulations

Linear (Standing Wave) Cavity (SHB)

Parameter Values

Quantity	Symbol	Value
Gain recovery time	T ₁	0.5 ps
Dephasing time	T ₂	0.067 ps
Linear cavity loss	l_0	5 cm ⁻¹
Transition dipole element	μ	$2.54 \text{ nm} \times e$
Background refractive index	n	3
Cavity length	L	3 mm
Saturable absorber coefficient	γ	$10^{-8} \frac{\mathrm{cm}}{\mathrm{V}^2}$

Numerical Sim.: SHB, RNGH but no saturable absorber

Optical Frequency (THz)

A. Gordon et al., PRA 77, 053804 (2008)

Mii.

Including Saturable Absorber

3µm wide buried heterostructure laser at 8.38 µm.

A. Gordon et al., PRA 77, 053804 (2008)

rLe

Maxwell-Bloch Simulations

A. Gordon et al., PRA 77, 053804 (2008)

1417

Actively Modelocked QCL

Thick insulation is used to reduce the parasitic capacitance.

Pumping of small section: $\lambda = p * \lambda_{th} + m * \lambda_{th} * sin(\omega_R * t)$ Pumping of long section: $\lambda = p * \lambda_{th}$

Parameter values

Quality	Symbol	Value
Gain Recovery Time	T ₁	50 psec
Dephasing time	T ₂	0.05 psec
Linear cavity loss	I _o	10 cm ⁻¹
Mirror reflectivity	R	0.53
Transition dipole element	μ	2.54 nm × <i>e</i>
Background refractive index	n	3.2
Cavity length	L	2.6 mm
Modulator section length	L _s	0.24 mm

Spectra

Autocorrelation plots including SHB

Ch. Wang, CLEO 2008

Laser Dynamics

Laser Dynamics

Inside the modulation region without SHB:

Pulse Trains at Output with SHB

Summary

- 1. Short gain recovery time
 - Enhances spectral holeburning wideband multimode operation
 - No stable modelocking
- 2. Including saturable absorber effects
 - RNGH like coherent instability
 - Explains double-humped spectral shape
 - A ring laser suppresing SBH could confirm this picture
- 3. Routes to stable short pulses:
 - a. Long gain recovery superdiagonal structure Active modelocking leads to isolated "modelocked" pulses.
 - b. Next: Passive mode locking with reverse biased section

