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“Short wavelength QCLs” emit in 
1st atmospheric window, 3–5 µm.
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Gas detection:
Environmental
Medical diagnoses

Mid-IR imaging (medical)

Infrared countermeasures :
Especially 3.8–4.5 µm
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MIR Imaging of Squamous Cell Carcinoma

Bruker Optics

Cancerous tissue absorbs 
and reflects infrared light 
differently than does 
normal tissue.
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Why is 3–5 µm “short wavelength” for 
QCLs?

• 3–5 µm ⇒ 250–410 meV
• Even for longer wavelength QCLs, you can’t get 
photon energies greater than ½ of the difference 
in conduction band edge ⇒ ∆Ec ≈ 500–800 meV

• For GaAs/AlGaAs, ∆Ec ≈ 350 meV
• For (Ga,In)As / (Al,In)As lattice-matched to InP, 
∆Ec ≈ 530 meV
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Semiconductor-based lasers for 3–5 µm:

Use both conduction and valence bands:

ICL

Type-II GaSb-based ICL 

Type-I GaSb-based p-n diode lasers
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Semiconductor-based lasers for 3–5 µm:

Use only the conduction band, but with large ∆Ec:

InAs/AlSb QCLs

Strain-compensated 
InP-based QCLs

InGaAs/AlAsSb QCLs
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Adding strain to increase performance is 
not a new idea:

pHEMT:

U.S. Patent 4,827,320 
"Semiconductor with Strained 
InGaAs Layer“ (1989)

“Transistor Performance and 
Electron Transport Properties 
of High Performance InAs
Quantum-Well FET's", IEEE
EDL (1994).
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Strain compensation is also not new in 
QCLs:

⇒λ=3.49 µm
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We expect at least 5 advantages from 
strain compensated structures on InP:

Ranked by importance:

1. Larger ∆Ec than without strain to achieve a larger 
transition energy between the ULL and LLL.

2. Strain increases the energetic separation between the Γ
valley and the X and L valleys.

3. AlAs blocks the leakage of the ULL into the upper states 
of the extractor/injector miniband.

4. Strain compensation allows using (Al,In)As as the “well 
material” for the ULL.

5. Strain compensation allows the use of InAs for the LLL.

We’ll look at each of these in the next foils.
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We can greatly increase ∆Ec through 
compensated strain.
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The strain partially works against a large ∆Ec.
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Compressively strained 
InAs has Ec ≈ 160 meV
higher than unstrained.

Tensilely strained AlAs 
has Ec ≈ 240 meV lower 
than unstrained.
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We can compare the ∆Ec in several 
direct-band-gap III-V heterosystems.
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The internal strains are large:

• For AlAs on InP, ε|| is about +3.7%
• For  In0.7Ga0.3As on InP, ε|| is about -1.6%
• For InAs on InP, ε|| is about -3.5%

With higher growth temperatures, the compressive strain drives 
the formation of quantum dots or wires.

Bierwagen and Masselink, APL (2005).
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Structures are grown using gas-source 
MBE for excellent InP 

Riber Compact 21T Riber 32P GSMBE
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Handling Hydrides

•Liquid hydride sources

•Delivery < 1 bar

•Mass-flow or pressure 
controlled

•Run-vent
•Cracked inlet @ 850 °C

•Detector system, fully 
interlocked

•All cabinets at underpressure; 
gas lines encapsulated 
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Strain compensation has open questions.

To achieve strain compensation, we usually require that the 
in-plane lattice constant of the system matches the 
substrate:
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Global strain is compensated; also 
important to avoid excessive local strain 
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The average valence band edge is 
calculated relative to the vacuum level.

Average valence 
band edge energy

Van de Walle (1989) tabulates the 
valence band energy (without spin) 
on an absolute scale.
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Spin is added in “by hand” and adding Eg
gives the conduction band edge.

Ev,ave

Ev,ave + ∆/3

Ev,ave + ∆/3 + Eg
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The conduction band is distorted due to strain: 
each valley through its deformation potential.
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The biaxial strain component further splits 
the X valleys
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The lower X valleys are the transverse valleys, 
so they are about 50 meV lower than the X 
position calculated from hydrostatic strain.
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The AlAs/In0.73Ga0.27As system allows 
high-energy intersubband transitions

We expect maybe 0.75 eV (1.7 µm)

4.2 nm ⇒ 0.35 – 0.43 eV

3.3 nm ⇒ 0.42 – 0.55 eV
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Strain compensation is an additional 
constraint on design.

π/d0 z

E

kz

Narrower minibands would need thicker AlAs, but 
with thin InGaAs…
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Composite Barriers based on AlAs ⇒
independent control of energy and strain

Replace the AlAs with In0.55Al0.45As + AlAs

In0.73Ga0.27As

In0.55Al0.45As

AlAs
injection barrier

 ΓEC

 LEC

 I 

 II 2

 III 

F=76 kV/cm

1

Addition of In0.55Al0.45As
•shrinks miniband
•partially compensates for 
thicker AlAs
•independent control of 
confinement and strain

Can also use AlAs with
addition of Al(As,Sb).
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Using composite barriers of AlAs + In0.55Al0.45As, 
the miniband is shrunk and absorption energies 
are high.

We now expect closer to 0.75 eV (1.7 µm)

AlAs: 1.5 or 2.0 nm
InGaAs: 2.8, 2.2, 1.9 nm

2.8 nm ⇒ 0.58 eV, 2.14 µm
2.2 nm ⇒ 0.66 eV, 1.88 µm
1.9 nm ⇒ 0.72 eV, 1.72 µm
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No dispersion thanks to thicker 
composite barriers; broadening 
due to non-parabolicity with 
high doping.

Semtsiv, et al. JAP, 2005.
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In QCL, most barriers are AlAs, with composite 
barriers used for better confinement.

The design uses the transition from a few upper states 
into a single lower state that is connected to a miniband.
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AlAs also prevents unwanted tunneling 
out of the upper laser level.

Yang et al.

excited states

injector
3 2

1

80 kV/cm

extractor

For small barriers, AlAs can help 
prevent tunneling out of the upper 
laser level into the continuum.

In our case, there is also an upper 
miniband we need to avoid.
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The emission wavelength is limited by the 
indirect valleys in the well, not by ∆Ec.
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E2 is limited by the indirect valleys in the InGaAs 
wells.

Questions:

Where is the next state 
above E2?

How to maximize E2–E1
keeping E2 away from the 
indirect valleys?
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Optimize well material for large indirect-Γ
energy separation, moderate strain.
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The maximum transition energy increases 

correspondingly.

For relaxed InAs, 
λmin ≈ 2.7 µm.

InxGa1-xAs with x≈0.72

0.53eV ⇒ λmin ≈ 3.8 µm
0.61eV ⇒ λmin ≈ 3.3 µm
0.68eV ⇒ λmin ≈ 2.9 µm
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The poor coupling between Γ and X 
should help us, though.
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Relaxation from Γ2 directly to Γ1 is 4 times faster than 
via the X valleys. 

So we should 
be able to put 
Γ2 > X.

How far?
How best?

(Courtesy H. Schneider, Forschungszentrum Dresden Rossendorf, Germany)
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Designs for 3.8 µm and 3.6 µm

injector

extractor
76 kV/cm

23
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#1597,  z2,1=0.36nm, z3,1=0.09nm

3

#1596, z2,1=0.47nm, z3,1=0.19nm

injector
1

extractor

2

1596: for 3.8  µm

1597: for 3.6  µm

Both designs are 
similar, but 1597 has a 
thicker AlAs barrier to 
the left of the main QW 
to lift state 2 without 
lifting state 1. Thus,
E21 increases.
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1596 and 1597: Both lase at 3.8 µm 
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We see several differences 
between 1596 (3.8 µm) 
and 1597 (3.6 µm): 1596 
has broader EL and a 
lower threshold current.

But, both lase at 3.8 µm.
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Take the Lasers to Tallahassee

Resistive magnet up to 33 T.

Advantage over pulsed magnet is for measuring laser 
spectrum as function of B.

(with D. Smirnov and G. Federov)
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Experimental Observations
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1. Emission intensity 
oscillates with B field.

2. Bias voltage required to 
maintain current increases 
with B and oscillates with 
emission.

Conditions are T=6K, constant 
current during 100-ns current 
pulse.
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Experimental Observations
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3. Wavelength shift in emission 
spectrum: red shift for 1596, 
blue shift for 1597.



37

Energy shift with B-field for N=0 
Landau Levels

The lasing action takes 
place between the N=0 
Landau levels of the i=2 
and 1 states.

E2-E1 is almost independent of B.
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Why is light emission reduced for specific 
values of B?
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Scattering to the Landau Fan
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The emission intensity is 
smaller for resonances of 
Landau levels |1,N> with the 
electrons in |2,0>.

Electrons scatter to lower 
laser state without emitting 
photon.

Feedback for m*(E)
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Red shift with increasing B
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Blue shift with increasing B
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Blue shift with increasing B
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Spectral Shifts with B
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QCL 1596: Injector miniband
strongly coupled to state 2, 
B has minimal effect on 
transport. ⇒ Red Shift

QCL 1597: Injector miniband
weakly coupled to state 2, 
allows state 3 to invert and act 
as upper laser state, B has 
larger effect on transport. 
⇒ Zero or Blue Shift
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Lessons Learned

injector

extractor
76 kV/cm

23

1

#1597,  z2,1=0.36nm, z3,1=0.09nm

3

#1596, z2,1=0.47nm, z3,1=0.19nm

injector
1

extractor

2

Increasing the barrier 
between the upper and lower 
states results in a more 
diagonal transition with 
higher threshold current.

Stark effect can help reach 
shorter wavelengths:
Higher electric field,
more diagonal transition.
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Location of upper laser level is important.
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Three QCL designs emitting at 3.8 µm.

By varying the active region design, we can tune the location of
the main upper laser level.

Experimentally we can determine it through the B-field 
dependence of the emission wavelength.
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The location of the upper laser level influences 
the threshold and temperature dependence.
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Upper states for diagonal transitions are less temperature 
sensitive, but do not couple as well to the lower laser state.
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The “diagonal” design is pretty good and 
has a broad gain region.
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Thin injector barrier 
results in several ULLs
and a broad gain 
spectrum.
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External cavity tuning of broad-gain-
region 3.8-µm QCLs

Without AR coating on facets.

Littrow configuration using a 
parabolic mirror and a grating

With AR coating on facet.
(370 nm sputtered TiO2)
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We use similar designs for 3.6-µm QCL:

Our design works about as well at 3.6 µm as at 4 µm.
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Two major modifications to increase E2-E1:

3 2

extractor miniband

100 kV/cm
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injector miniband
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Upper laser states 
mostly located in 
AlInAs.

Upper laser states are 
high in energy and 
not well coupled to 
indirect valleys in lower 
QW.

1. Increase E2 by locating it in AlInAs (not GaInAs) 
and at higher electric potential.
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Two major modifications to increase E2-E1:

2. Lower E1 by adding thin InAs insert.

3 2
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This design emits at 
3.05 µm.

QW with lower laser 
state contains InAs 
insert.
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The 3.05-µm QCL emits >100 mW power at 
80K, but operates only up to 150K.
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A similar design for 3.3 µm emits up to 600 mW
and operates to 200K. 
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T0 is high at low temperatures, in spite 
of indirect valleys.
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Short wavelength designs are limited by 
the indirect valleys.
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The indirect valleys do not 
prevent lasing, but still 
have adverse effects.

Steep increase in Jth
beginning at 150K is 
probably due to 
scattering into the 
indirect valleys.
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Question still remains: Where are the 
indirect valleys?
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Data measured at NHMFL, Tallahassee,
with D. Smirnov and G. Federov

Output power from the 
3.05-µm QCL oscillates 
in magnetic field.

(Semtsiv, et al., APL 2008.)
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Minima in oscillations due to non-radiative 
scattering from E2 into Landau levels of E1

Electrons in |2,0› scatter into Landau 
levels of lower laser level:

• No phonon involved; momentum 
taken care of by interfaces.

• Landau levels 6, 7, 8, 9; weaker 
as ∆N is larger.

• Laser is turned off by fields 
B>40T so N<6 not seen.

• Extra oscillations (strong) 
between 10 and 20 T.
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New oscillations due to electrons in excited 
Landau levels of E2 scattering into X valley
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• Landau levels for E2 with N>0 
should be thermally occupied.
• Proposed resonant energy level is 
independent of B ⇒ heavy m*.
• Level is about 70 meV above E2 at 
B=0.
• Likely to be Xx,y valleys shifted 
lower due to uniaxial component of 
strain.
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When the lowest Landau level is nearly in 
resonance, the laser shuts off.
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We propose that when the N=0 
Landau level is nearly resonant 
with the indirect valleys, lasing is 
no longer sustainable.

If the lowest indirect valley is 70 
meV above the upper laser level, it 
is 470 meV above the lower laser 
level, and about 640 meV above 
the Γ level.

This value is about 40 meV
higher than expected from 
our model.
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Both the maximum temperature of operation and the 
onset of low T0 decrease with emission wavelength.
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The trend of steadily 
decreasing temperature 
for the onset of low T0, 
despite many changes to 
the active region, implies 
that the culprit is the 
indirect valleys.

Extrapolating these 
results implies an 
ultimate limit of 
about 2.7 µm.
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Laser Power and Efficiency in Pulsed 
Mode (old 3.8-µm data)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

 

 

Ef
fic

ie
nc

y 
(%

)

Temperature (K)

 DQE/Cascade
 Wall-plug 

8 K:
•Maximum power 12 W
•Total DQE of 1300%
•DQE/cascade of 45%
•Power efficiency 23%

243 K (-30°C):
•Maximum power 4 W
@5 A, 10 V

300 K:
•Maximum power 0.45 W
@4 A, 10 V
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Really high performance at 3.8 µm requires a 
number of processing improvements.

1.4 W at 80 K

See Manijeh Razeghi
invited talk Thursday.

Razeghi Group 2008
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More recently our focus is on improving 
the beam quality by using narrow ridges.

The ridge is wet etched 
to about 5 µm and 
overgrown with 
InAlP, InAlAs, InP.



63

A 5-µm ridge has similar lateral and transverse 
apertures and emits a nearly circular beam.

The beam is nearly circular with a divergence of 46°. 
The beam quality factor M2≈1.6 ⇒ well-suited for 
spectroscopy and imaging.
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with K. Kennedy and R. Hogg, University of Sheffield
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High power from narrow ridges:

Average power of 200 mW with 50% duty cycle.
Slope efficiency = 0.42 W/A
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Humboldt-University Peltier-cooled 
housings reach temperatures of -40°C.
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Despite the narrow ridge, power levels are 
quite high at Peltier temperatures.
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We obtain peak power of 450 mW and average 
power of 60 mW at 3.9 µm.

with K. Kennedy and R. Hogg, University of Sheffield



67

Surface-emitting (4 µm) QCL ring lasers 

Elvis Mujagić, et al. (TU Wien + HU Berlin)
(Poster on Thursday)
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Summary

•Strain compensation extends the useful range of 
QCLs based on InP. (Demonstrated to 3.05 µm. 
Possible 2.7 µm?)

•1st atmospheric window covered
•For large enough ∆Ec , it is the indirect valleys of the 
well material that limit emission wave length.

•New design features to avoid emptying upper laser 
state into InGaAs indirect valleys. (Diagonal 
transitions, “barrier material” for ULL, InAs for LLL.)

•Narrow ridges for excellent beam quality
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