
## **MIR Spectroscopic Sensing**

## **IDENTIFY ≫ MEASURE ≫ PROTECT.**

IQCLSW 19th Sept Simon Nicholson Sales Director – Cascade Technologies

## **The Company - Overview**







- Operating in the field of
  - → Optoelectronic systems
  - → Gas sensing
  - \$12m investment received since April 2004
  - \$6m investment in supply chain

Target markets

 Industrial
 Emissions Monitoring
 Trace Analytics
 Process Control

 Defence and Security

 Homeland
 Counter measures
 Illicits

 Medical

 Point of Care Diagnostics

## The location





Cascade Technologies is based in Stirling, Scotland.

27 Employees and 5 Consultants





#### **Our Expertise**



## Centre of Excellence- Product Dev/R&D/QCL application

#### Long Term Sustainable R&D

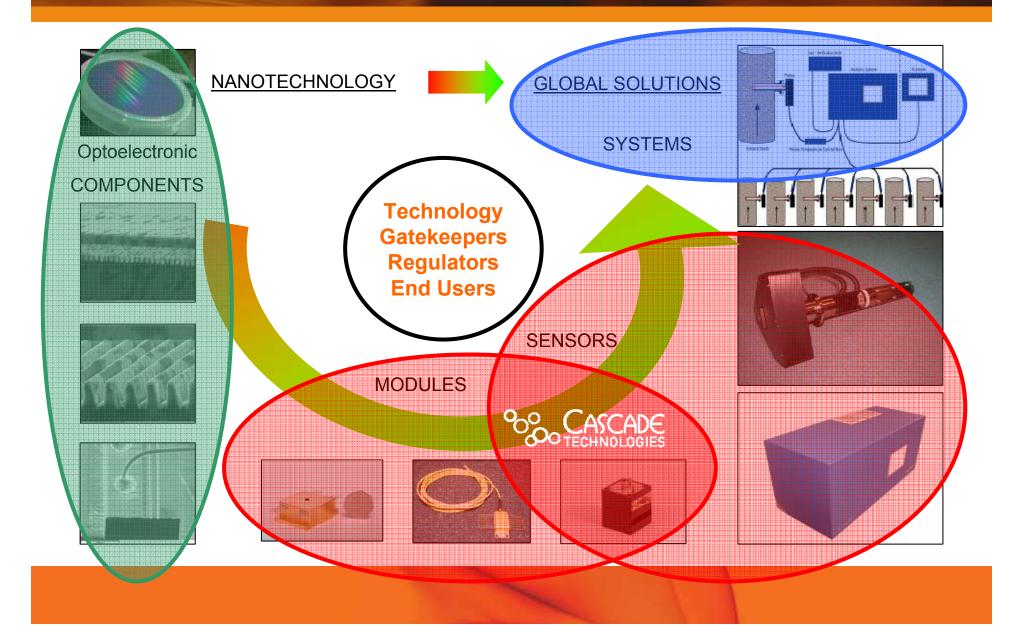
- Generate R&D collaboration/partnerships
- Assess technology capabilities/maturity
- Remain at technology forefront

#### Combined 40 years of expertise in QCL applications

- >Exclusive supplier partnerships with the 4 major QCL manufacturers
- >Partnerships ensure quality and performance targets are met
- Volume manufacturer of QCL based products

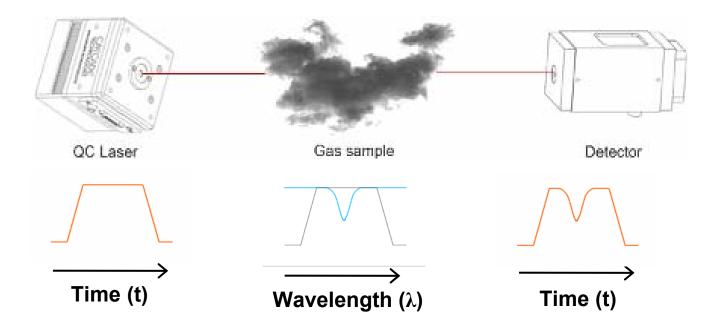
#### Create Platform Technologies/Products

- Develop application partnerships
- >A platform product
- Integrate into existing applications
- ➢Prove product capabilities
- Assess potential in novel applications
- Maintain/Grow competitive advantage
- Concept to Demonstrator 4 months
  - All IP/Expertise "in house"




# IDENTIFY MEASURE PROTECT.

Cascade's QC Laser based technology


## **From components to Solutions**



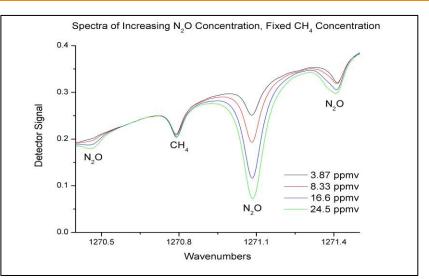


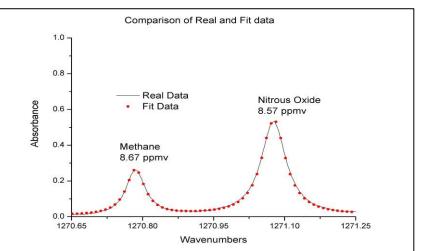
## How do we use it to measure Gas?





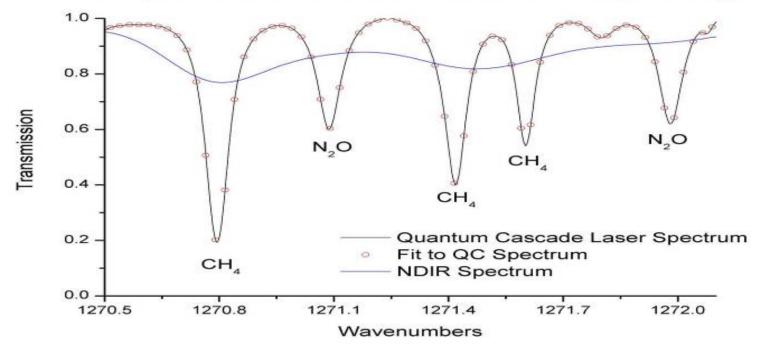
- Apply a current pulse to the QC Laser for about 1 microsecond
- Current pulse turns laser on and heats semiconductor material
- Heating causes rapid wavelength sweep spectral fingerprint is recorded
- Uses Beer Lambert law Theoretical physics for fitting routine
- Correction factors not required


## What advantages does our technique have?




- Real time (1 Micro second 1us)
  - Insensitive to turbulence
  - Insensitive to vibration
  - Multiple measurements "simultaneously"
- Large dynamic range
  - Linear response from PPB up to Tens of %
- Fixed Calibration
  - Concentration derived from first principles
  - Spectral database traceable to primary gas standard
  - Fundamental physics of the gas absorption spectra do not change with time
  - No requirement for calibration gases or any other consumables
  - Every Gas sensor will be the same

#### •Excellent Immunity to cross interference


• Can accurately measure target gas in complex gas mixture

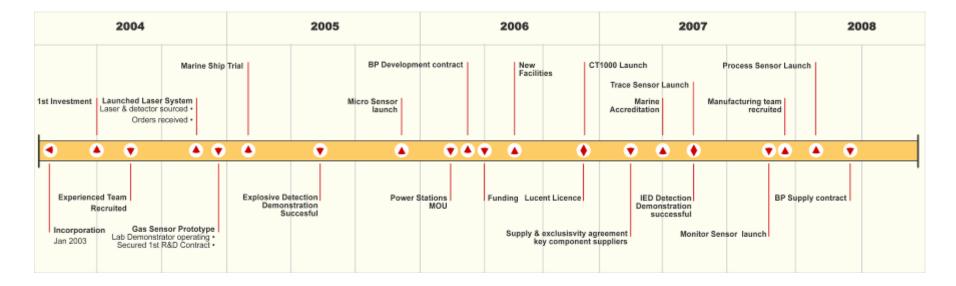


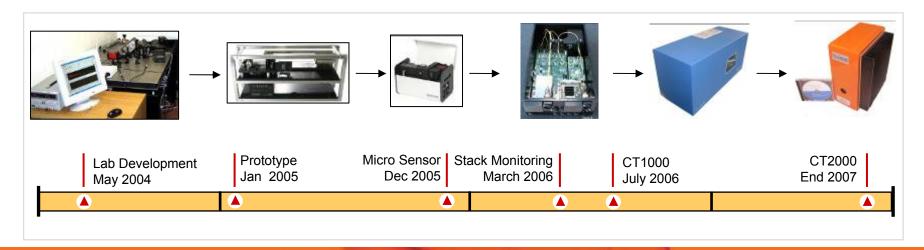


## How is this different from other technologies?






Comparison of Quantum Cascade Laser and NDIR Spectroscopy


- No need for correction curves for concentration, pressure, temperature, gas
- No need for zero/span
- Unambiguous Fingerprinting
- Simultaneous measurement of multiple compounds

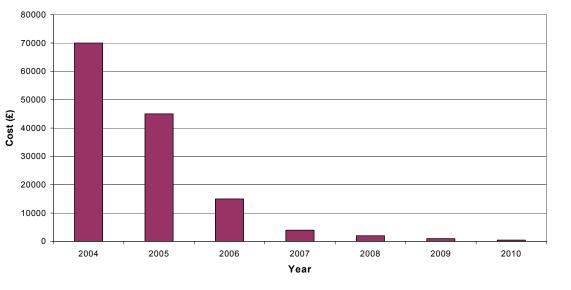


## **Technology Timeline**








## The Technology - Cost Down





#### **Component Costs**

- All components designed in-house manufacture out sourced
- Final assembly and test in-house
- Lasers/Detectors optimised by suppliers to Cascade specifications
- Costs include all key components (lasers, detectors, electronics, optics) and are based on volume supply 1000+





## **Our Products and Applications**



#### Industrial



- PPM detection capability
- 🔶 🛛 in Situ or Extractive
- Platform Development Completed



#### Industrial

#### PROCESS (~

- Sub PPM detection capability
- In Situ or Extractive Fast Response
- Platform Development completed Q3 2008



#### Marine

**Power Station** 

#### **Air pollution**

## Aerosols Boiler setting

**Automotive** 

## Industrial

PPB detection capability
 Extractive
 Platform Development completed Q3 2008



#### **Cigarette Manufacture**

Gas turbine

**Gas purity** 

#### **Defence and Security**

#### SECURITY 💭

- PPB detection capability
- In Situ/ Extractive Fast Response
   Trial Platform Development completed Q1 2008

## IED Detection Illicit Movement Counter Measure



## **Core detection technology**







Quad laser system allowing multiple gas detection.

Contains control electronics, detector, digitizer, PC and power supply.

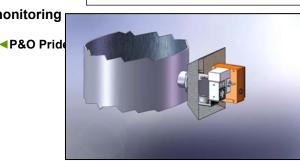
Base unit that can attach to a number of interfaces.

- •Sample probe (optical Cell: cm to km)
- •Mid Infrared Fibre (up to 20m)
- •Hollow waveguide (small volume cell)
- •Free space

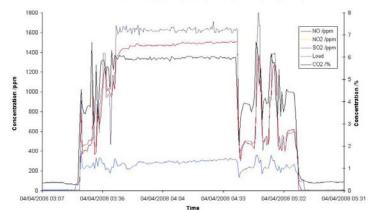
## Compact, robust and cost effective.



# Marine Market - Typical Ferry Exhaust Stack Output - UK/France - Multiple gases


#### Industrial




- PPM detection capability
- In Situ or Extractive
- Platform Development Completed

#### Solutions for marine emission monitoring





Marine Sensor - Multiple gases, One trip with engine load (4th April 2008)



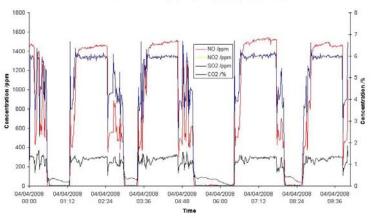




measurement

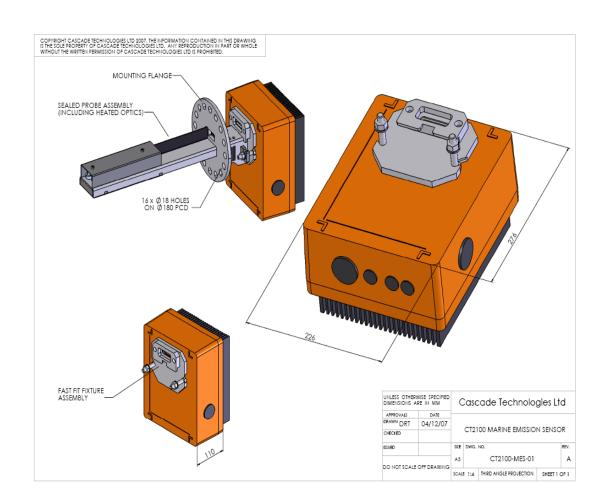
The Technology

- No consumables low cost of ownership
- 12 month maintenance interval


In – situ is the most representative

Low through-life cost

#### User Benefits


- Corporate reporting of emissions
- Compliance with regulations
- Diagnostics in real time
- Improved efficiency fuel

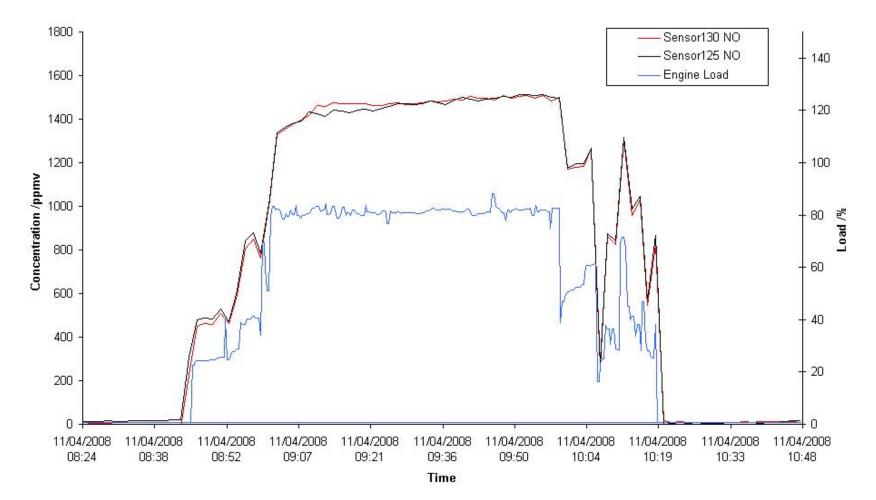
Marine Sensor - Multiple gases, Multiple trips (4th April 2008)



## **CT 2000 sensor – Schematic and Installation**

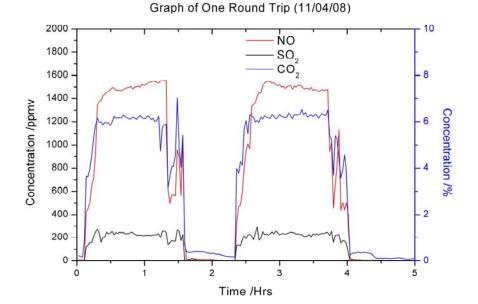









## **Comparison of NO data from two independent sensors**








#### **Comparison between In Situ and Extractive output**





In-situ 15 second response time Most Accurate measurement

2000 10 ŇΟ 1800 SO, CO 1600 8 1400 Concentration /ppmv Concentration /% 1200 6 1000 800 600 400 2 200 0 2 3 0 5 Time /Hrs

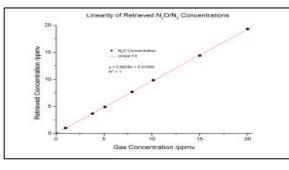
Graph of One Round Trip (11/04/08)

Simulated extractive – 15 minute averaging Data significantly reduced

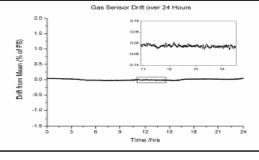
#### Key benefits of additional data

- Instantaneous tuning and diagnostics
- Potential for process control with real time feedback loops

## **MCERTS Accreditation and Type Approval**



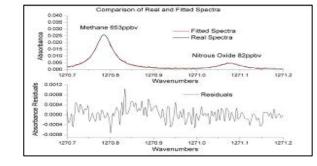




- Performance
  - → Linearity
  - ➔ Cross Interference
  - → Temperature
  - ➔ Pressure
  - ➔ Noise
  - ➔ Drift

#### Environmental

- Humidity
- Vibration
- Electrical




#### Linearity R<sup>2</sup> = 1



## Drift (24 hrs) < 2 ppb

#### Cross Sensitivity of CH<sub>2</sub>N<sub>2</sub> with N<sub>2</sub>ON<sub>2</sub> Methane Nitrous Oxide Linear Fit of Methane Concentration y = -9.366x + 75.46 R<sup>2</sup> = 0.9861 4 5 6 7 Measurement Number

#### Cross Sensitivity < 0.02% FS



Noise < 1 PPB

• First QCL technology accredited to MCERTS and Type Approval requirements without any zero, span or cross interference correction

- Gas database now extended beyond NOx, SOx, CO2 and now includes NH3, H2O, CO and N2O.
- Accreditation has proven to be a major milestone in demonstrating technology maturity

## **Butane Leak detection for Aerosols filling lines**



#### Industrial



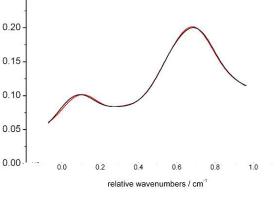
#### Aerosol Leak Detection

- >20 cans per second
- Real time analysis
- High sensitivity (tens of ppb)
- Low false negative (<2.10<sup>-5</sup>)
- Low false positive (<2.10<sup>-4</sup>)
- Hardware must be outside exclusion zone
- Formal acceptance received from customer (5x more sensitive at 2x the speed)



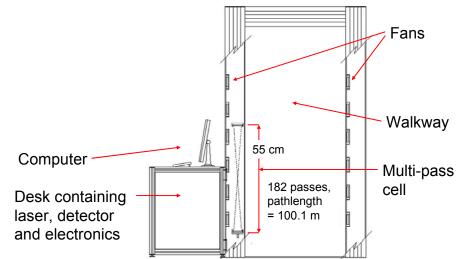
## **Trace IED Detection Portal**




#### **Defence and Security**



PPB detection capability


- 🔶 🛛 In Situ/ Extractive Fast Response
- Trial Platform Development completed Q1 2008





# The IED precursor H2O2 portal performances• Minimum detection level:5ppb• Fingerprint acquisition:<50 ms</td>

- Recognition/detection/concentration retrieval:
- Detection rate:
- Interferant free:
- Detection capability:
  - 1. Compound  $H_2O_2$  in liquid/solid (dried)
  - 2. Compound  $H_2O_2$  mixed with flour
  - 3. Simulated IED based on H<sub>2</sub>O<sub>2</sub>



0.25

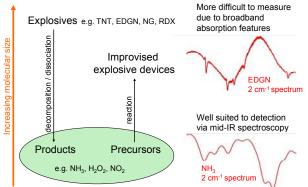


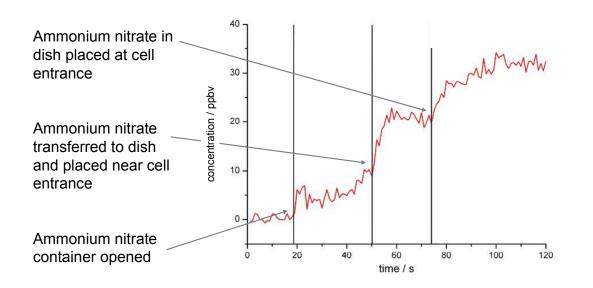
<50ms

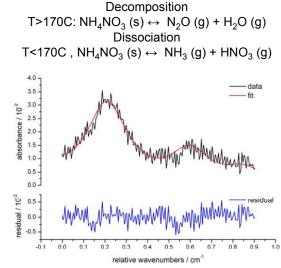
>10Hz

>40 tested

#### **Bulk explosive detection**





#### **Defence and Security**




- PPB detection capability
- In Situ/ Extractive Fast Response
- Trial Platform Development completed Q1 2008
- Existing Applications:



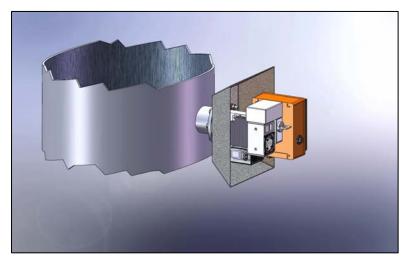






NH<sub>3</sub> Concentration calculated from fit = 32.8 ppbv Detection limit = 4.5 ppbv .Eq. concentration of NH3: 2-6ppb (RH 95-0%)

#### **New Developments**




#### Cascade On Stack<sub>™</sub> Sensor

- On stack system with sensor directly mounted onto stack,
- No sample lines or sample manifold
- No sample conditioning
- No pump option
- Fast response time
- Simplified zero/span (where required)
- Launch October 2008

#### Cascade Uni-Drive ™ Control Electronics

- Hybrid electronics for CW and Pulsed N-IR and QCL laser drive.
- Extended gas capability (HCI, HF, O<sub>2</sub>)
- Revised detection algorithms for ultra trace detection (ppt)
- On board DSP gas analysis for autonomous operation
- 1Khz data output for process applications
- Launch Spring 2009







# IDENTIFY MEASURE PROTECT.

Performance of QC Laser technology

## **QC Laser template specification example**



#### Nominal Reciprocal Wavelengths between T1 (15C) and T2 (35C):

- $\tilde{u}1 = 1345$ cm-1  $\tilde{u}2 = 1631$ cm-1  $\tilde{u}3 = 1904$ cm-1  $\tilde{u}4 = 2230$ cm-1
- $\tilde{u}(T2) = < \tilde{u}n = < \tilde{u}(T1)$

#### Current and voltage compliances:

Pulse current compliance (Ic): =< 4 Amps Pulse voltage compliance (Vc): =< 20 Volts Product current threshold (Ith): =< 1 Amps

#### Duty cycle, repetition frequency, temperature tuning rate and reciprocal wavelength scan:

Operating duty cycle (DCc): =< 5% Useful pulse duration (tpulse): 333ns =< tpulse =< 1000ns Pulse repetition frequency (PRF): =<150 KHz Useful reciprocal wavelength scan during tpulse ( $\tilde{u}s$ ): >= 2cm-1 Temperature tuning rate ( $\Gamma$ ): 0.15 cm-1/oC >=  $\Gamma$  >= 0.05 cm-1/oC RMS (middle of pulse) : =< 0.1% of full pulse amplitude

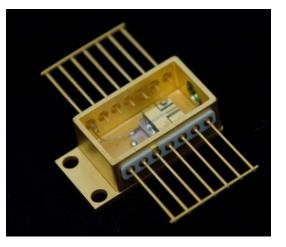
#### Operating and environmental temperature:

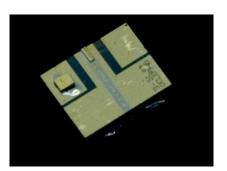
Product sub-mount temperature (T): 15C =< T =< 35C Product package environmental temperature (Tenv): -20C =< Tenv =< 85C

#### Beam divergence at emitting facet of the Product:

Mean optical output power (Pm) guaranteed in a full solid angle of 60°.

#### Single mode suppression ratio:


SMSR of the Product over the laser gain spectrum of the Product: >= 30dB


#### Mean optical output power:

Mean optical output power (Pm) during tpulse >= 50 mW Optical output power decay (Pdecay) from start to end of tpulse: =< 30%

#### Ohirp rate:

At any given time during tpulse the chirp rate (F): 0.002 cm-1/ns = < F = < 0.006 cm-1/ns





## **Production QC Laser test platform**





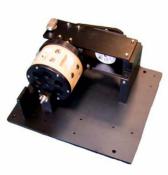
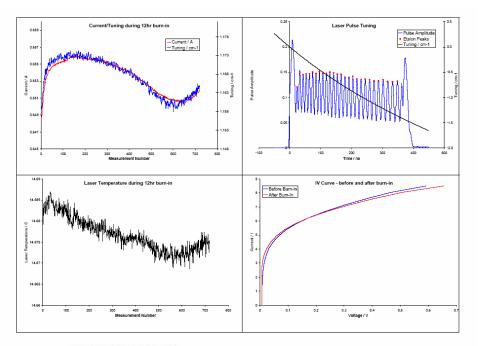
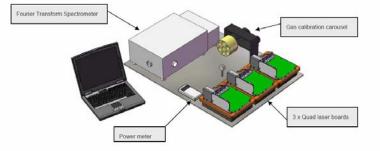




Figure 1. Quad Laser test production platform


Figure 2. Gas Calibration carousel

- Testing of 4 lasers simultaneously (unlimited number of platforms can be networked: N x 4 lasers)
- Perform FAT, burn in and long term reliability test while monitoring
  - Light
  - Current
  - Voltage
  - TEC temperature,
  - Ambient temperature
  - Real time tuning rate of pulsed lasers, etc...
- Typical measurements and functionalities are:
  - Current , voltage threshold and compliance of laser via L-I-V curve measurement
  - Relative tuning of laser during pulse via included Ge Etalon
  - Programmatically generate Laser spec sheets
  - Scripting of custom routines via Lab∨IEW drivers
  - · Built in software allows recorded data to be plotted and analyzed or exported to MS Excel format



Laser capacity (12 lasers illustration): Reliability - 50 lasers/year Burn in - 2 400 lasers/year FAT - 20 000 lasers/year

2 000hours per laser MTTF 12hours per laser 1hour per laser (extended FAT: stress, condition of use and datasheet)

