Single-mode Quantum Cascade Lasers Emitting at 3.3 µm

R. Teissier, J. Devenson, O. Cathabard, and A.N. Baranov

Institut d'Électronique du Sud Université Montpellier 2 / CNRS Montpellier, FRANCE

Motivations

• Explore one frontier of QCL spectrum

 Provide lasers for gas sensing in the 3 – 4 µm wavelength range

Outline

- Design and fabrication
- FP lasers
- DFB lasers
- Short wavelength QCL limit

Antimonides : best materials for short λ QCLs

	GaAs/ AlGaAs	InGaAs/ AlInAs	Strained InGaAs/ AllnAs	InGaAs/ AIAsSb	InAs/ AISb	ZnCdSe/ ZnCdMgSe	GaN/ AIN
Δ_{Γ} (eV)	0.35	0.5	0.74	1.6	2.1	0.78	2
$\Delta_{F-X,L}(\mathbf{eV})$	0.35	0.53	0.61	0.5	0.73	>1.2	1.6
m*	0.067	0.043	0.035	0.043	0.023	0.128	0.2

InAs/AISb QCL vertical design

High energy levels $hv \sim 400 \text{ meV}$

e3 ~ 700 meV

Very thin layers

Large number of QWs

High accuracy is required in modeling and growth

Heterostructure growth by Molecular Beam Epitaxy

TEM image : Anne Ponchet, CEMES, Toulouse

Abrupt InAs / AISb interfaces (<1 ML)

Strain control through AIAs-like interface bonds

Reproducible, high quality, material growth

InAs-based waveguide

- transparent due to Moss-Burstein effect
- Iow refractive index
- acceptable free carrier absorption

 Γ = 0.6, α_{w} = 6 cm⁻¹

ÎES

Wet etched ridge, 5 - 20 μ m wide HR coated back facet (SiO₂/Au) Indium soldered epi-side down

InAs/AISb QCLs emitting near 3.3 µm

at room temperature:

 λ = 3.33 µm, J_{th}=3.0 kA/cm², P ~ 1 W

High temperature operation

advantage over interband lasers

Diagonal design

Diagonal design with longer upper state lifetime

Higher gain Less sensistive to lower state population

Lower threshold Better slope efficiency

Diagonal vs. Vertical designs

Better efficiency at high T and high currents But threshold is larger than expected

ÎES

$$\frac{1}{\tau_{up}} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_i} \qquad \boldsymbol{\tau_i} \approx \boldsymbol{0.6 \ ps}$$

Fabry-Pérot emission spectra

DFB lasers

Holographic lithography ICP etched grating Wet etched ridge

 $\kappa = 12 \text{ cm}^{-1}$ dominated by index coupling

ÎES

DFB QCL emitting near 3.3 µm

High peak power single mode emission at Room Temperature

Tuning range

tuning rate ~ $0.3 \text{ cm}^{-1}/\text{K}$

> 10 cm⁻¹ tuning range, SMSR > 30 dB

DFB coupling

Single frequency operation between 60 and 95°C

Short wavelength limit

shortest room temperature operation

Antimonides prove their high potential for short wavelength QCLs

High peak power, high temperature operation of FP lasers in the 3-4 µm range

Tunable single frequency operation of DFB lasers at 3.35 µm, with high peak power at room temperature

Perspectives

Cover the whole range from 3 to 4 μ m with DFB QCLs

Improve performances (higher DC)

Applications in gas sensing systems

