

Recent Progress of Semiconductor Laser-Based Infrared Spectroscopic Techniques

<u>F.K. Tittel</u>, Y. Bakhirkin, R.F. Curl, L. Dong, A.A. Kosterev, R. Lewicki, S. So, D. Thomazy and G. Wysocki Rice Quantum Institute, Rice University, Houston, TX, USA

http://ece.rice.edu/lasersci/

OUTLINE

IQCLSW Ascona

Switzerland

Sept. 14-19, 2008

- Motivation: Wide Range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- New Laser Sensing Technologies (QEPAS)
- Selected Applications of Trace Gas Detection
 - Quartz Enhanced Photoacoustic Spectroscopy (Ammonia)
 - QEPAS based Chemical Sensing of Broadband Absorbers
- Future Directions and Conclusions

Work supported by NSF-MITHE, NASA, DOE and Robert Welch Foundation

Wide Range of Trace Gas Sensing Applications

• Urban and Industrial Emission Measurements

- Industrial Plants
- Combustion Sources and Processes
- Automobile, Truck, Aircraft and Marine Emissions

• Rural Emission Measurements

• Agriculture, Forestry and Livestock

Environmental Monitoring

- Atmospheric Chemistry
- Volcanic Emissions

Chemical Analysis and Industrial Process Control

- Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Needs and Methods in IR Laser Monitoring

Requirements for trace gas sensor platforms: Sensitivity, specificity,

multi-gas species, continuous, unattended ,rapid data acquisition, portability, low electrical power consumption and cost

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with and without retro-reflector)
- Evanescent Field Monitoring (fibers & waveguides)

Photoacoustic Spectroscopy

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction

Quartz Enhanced Photoacoustic Spectroscopy

.

From conventional PAS to QEPAS

Quartz tuning fork as a resonant microphone

Unique properties

- Extremely low internal losses:
 - Q~10,000 at 1 atm
 - Q~100,000 in vacuum
- Acoustic quadrupole geometry
 - Low sensitivity to external sound
- Large dynamic range linear from thermal noise to breakdown deformation
- Wide temperature range: from 1.56K (superfluid helium) to ~700K
- Temperature, pressure & humidity insensitive
- Compact, small sample volume-< 1mm³
- Low cost

Other parameters

- Resonant frequency ~32.8 kHz
- Force constant ~26800 N/m
- Electromechanical coefficient ~7×10⁻⁶ C/m

QEPAS SNR Enhancement of Acoustic Microresonator

Microresonator tubes

Must be close to QTF but not touching (i.e. $30-50\mu m$ gaps). Each tube is ~ 5mm long (~I/2 for sound at 32.8 kHz)

QEPAS Signal Gain: ×10 to ×20

Optimum Geometry: ID=0.02".Gap=25-30µm OD=0.023":L=4.4mm

Alignment-free QEPAS Absorption Detection Module

A. Lyakh et al., Pranalytica, Harvard, Adtech, Applied Physics Letters 92, 111110, 2008

Trace Gas Sensors Areas Explored at Rice

- Methods employed
 - Extended pathlengths (Multpass Gas Cells & Retroreflector)
 - Cavity R
 - ingdown
 - Off-Axis Integrated Cavity Output Spectroscopy
 - Faraday Rotation Spectroscopy
 - Wavelength Modulation
 - Pulse-to-pulse fluctuation removal by comparing the same pulse on the same or another detector
 - Quartz Tuning fork based photoacoustic spectroscopy (QEPAS)
- 16 gases detected: NH_3 , CH_4 , H_2S , N_2O , CO_2 , CO, NO, C_2H_2 , H_2O , OCS, C_2H_4 , SO_2 , C_2H_5OH , C_2HF_5 , H_2CO , C_2H_6 , HCN and isotopic species of C, O and N
- Practical applications
 - Crew Health Maintenance & Life Support H₂CO, NH₃
 - Fire and Post Fire Detection
 - Radioactive site remediation
 - Medical breath analysis NO, NH₃, CO₂, CH₃COCH₃, OCS
 - Industry catalyst poison CO
 - Urban air smog H₂CO

Biomarkers Present in Exhaled Human Breath

More than 400 different molecules in breath; many with well defined biochemical pathways

compound	concentration	physiological basis		
Acetaldehyde	ppb	ethanol metabolism		
Acetone	ppm	decarboxylation of acetoacetate		
Ammonia	ppb	protein metabolism		
Carbon dioxide	%	product of respiration		
Carbon disulfide	ppb	gut bacteria		
Carbon monoxide	ppm	production catalyzed by heme oxygenase		
Carbonyl sulfide	ppb	gut bacteria		
Ethane	ppb	lipid peroxidation		
Ethanol	ppb	gut bacteria		
Ethylene	ppb	lipid peroxidation		
Hydrocarbons	ppb	lipid peroxidation/metabolism		
Hydrogen	ppm	gut bacteria		
Isoprene	ppb	cholesterol biosynthesis		
Methane (Methane)	ppm	gut bacteria		
Methanethiol	ppb	methionine metabolism		
<mark>Methanol</mark>	ppb	metabolism of fruit		
Methylamine	ppb	protein metabolism		
Nitric oxide	ppb	production catalyzed by nitric oxide synthase		
Oxygen	%	required for normal respiration		
Pentane	ppb	lipid peroxidation		
Water	%	product of respiration		

Terence Risby, Johns Hopkins University

Mid-IR QEPAS based NH₃ Gas Sensor Architecture

QEPAS Driver

Noise–equivalent concentration (NEC) for t=1s time constant is 6 ppb for 20mW excitation power at 1046.4 cm⁻¹ (110 Torr)

Interface for Real-time Breath NH₃ Analyzer

Real-time Breath NH₃ Samples

Presence of CO_2 in breath ($\geq 5\%$) contributes to resulting sensor response signal. This fact must be taken into account in the quantification of exhaled ammonia concentrations

Monitoring of broadband absorbers

- Freon 125 (C_2HF_5)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 - Recognized biomarker for diabetes
- TATP, Acetone Peroxide ($C_6H_{12}O_4$)
 - Highly Explosive
- UF₆ Analytical Enrichment Measurements by IAEA, Vienna.

UF₆ Mid-Infrared Absorption Bands

Assignment	v, cm⁻¹	'σ, cm⁻¹/atm	
2v ₃ +v ₆	1386±2	0.0018	
V1+V2+V6	1341	0.0088	
V1+V3	1290.9±0.5	0.72	
2v ₂ +v ₆	1211±2	0.0007	
v ₂ +v ₃	1156.9±0.5	0.82	
v ₃ +2v ₆	905±2	0.0035	
V1+V4	852.8±0.5	0.12	
V3+V5	821	0.33	
v ₃	625	350	

Absorption spectrum of gas mixture under investigation and observed spectral features identification. R.S. McDowell, L.B. Asprey, R.T. Paine, Vibrational spectrum and force field of uranium hexafluoride. -J. of Chemical Physics, Vol. 61, No. 9, 1974.

QEPAS Performance for 12 Trace Gas Species (Sept '08)

Molecule (Host)	Frequency,	Pressure,	NNEA,	Power,	NEC (τ=1s),
	cm	Iorr	cm w/Hz	mw	ppmv
$H_2O(N_2)^{**}$	7306.75	60	1.9×10 ⁻⁹	9.5	0.09
HCN (air: 50% RH)*	6539.11	60	< 4.3×10 ⁻⁹	50	0.16
$C_2H_2 (N_2)^*$	6523.88	720	4.1×10 ⁻⁹	57	0.03
NH ₃ (N ₂)*	6528.76	575	3.1×10 ⁻⁹	60	0.06
$C_2H_4 (N_2)^*$	6177.07	715	5.4×10 ⁻⁹	15	1.7
CH ₄ (N ₂)*	6057.09	950	2.9×10 ⁻⁸	13.7	2.1
CO ₂ (breath ~100% RH)	6361.25	150	8.2×10 ⁻⁹	45	40
$H_2S(N_2)^*$	6357.63	780	5.6×10 ⁻⁹	45	5
CO ₂ (N ₂ +1.5% H2O) *	4991.26	50	1.4×10^{-8}	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10 ⁻⁹	7.2	0.12
CO (N ₂)	2196.66	50	5.3×10 ⁻⁷	13	0.5
CO (propylene)	2196.66	50	7.4×10^{-8}	6.5	0.14
N ₂ O (air+5%SF ₆)	2195.63	50	1.5×10^{-8}	19	0.007
C ₂ H ₅ OH (N ₂)**	1934.2	770	2.2×10 ⁻⁷	10	90
C ₂ HF ₅ (N ₂)***	1208.62	770	7.8×10 ⁻⁹	6.6	0.009
NH ₃ (N ₂)*	1046.39	110	1.6×10 ⁻⁸	20	0.006

* - Improved microresonator

** - Improved microresonator and double optical pass through ADM

*** - With amplitude modulation and metal microresonator

NNEA - normalized noise equivalent absorption coefficient.

NEC – noise equivalent concentration for available laser power and $\tau=1s$ time constant, 18 dB/oct filter slope.

For comparison: conventional PAS 2.2 (2.6)×10⁻⁹ cm⁻¹W/√Hz (1,800; 10,300 Hz) for NH₃*, (**)

* M. E. Webber et al, Appl. Opt. 42, 2119-2126 (2003); ** J. S. Pilgrim et al, SAE Intl. ICES 2007-01-3152

Future of Chemical Trace Gas Sensing

.

DLS tunable 10.6µm CW EC-QCL based QEPAS Sensor

1.0

0.0

920

Daylight Solutions EC-QCL

930 940 950 Wavenumber [cm⁻¹]

DLS CW EC QCL

NH3 @944 cm⁻¹; 34mW,

Tuning Range:54cm⁻¹

(10.29 - 10.95 µm)

960

970

Ultra-compact Semiconductor Laser based Trace Gas Sensor

Rapid Prototyped Multipass Cell based TDLAS Platform

- Designed for TO5 Packaged CW Lasers with Integrated TEC (VCSELs, Sb, QCLs)
- Wavelength modulation capability (scan, 1f, or 2f)
- Quadrature digital lock-in amplifier
- Low noise current driver
- TEC driver, 0.001 °C stability
- Battery Powered
- Cost: ~ \$1,000

Wireless Networking Module

763 nm VCSEL based Oxygen TDLAS sensor

MPC LAS 2f DigitalLock-InSignal

Also CO₂ LAS detection: 1 ppm (1 sec.) @2.7µm Power consumption:: 0.2W > 100x improvement @4.3µm

Summary & Future Directions of Infrared based Gas Sensor Technology

• Quantum Cascade, Interband Cascade, GaSb Laser and VCSEL based Trace Gas Sensors

- Compact, tunable, and robust sensor platforms
- High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
- Capable of fast data acquisition and analysis
- Detected 13 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂CO, SO₂, C₂H₅OH, C₂HF₅ and several isotopic species of C, O, N and H.

• New Applications of Trace Gas Detection

- Environmental Monitoring (urban quality H_2CO and, isotopic ratio measurements of CO_2 and CH_4 , fire detection and quantification of engine exhausts)
- Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
- Medical & biomedical diagnostics (NO, NH₃, N₂O, H₂CO and CH₃COCH₃)
- Hand-held sensors and sensor network technologies (CO₂, NH₃, CO)

• Future Directions and Collaborations

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on EC-QCL (i.e sensitive concentration measurements of broadband absorbers, in particular VOCs, HCs and multi-species detection)
- Development of optically gas sensor networks based on QEPAS and LAS

