Hot electrons in THz quantum cascade lasers

Miriam S. Vitiello, Gaetano Scamarcio,

Regional Laboratory LIT³, CNR – INFM and Physics Dept., University of Bari, Italy

Giacomo Scalari, Christoph Walther, Jerome Faist

ETH Zürich Switzerland

Harvey Beere, David Ritchie

Cavendish Laboratory, University of Cambridge, Cambridge, UK

Jniversità di Bari

- Experimental evidence of hot-electron cooling associated with photon emission
- ✤ Energy balance equation model in QCLs→ correlation of laser induced hot electron cooling with quantum efficiency
- Assessment of:
 - Internal quantum efficiency
 - External differential efficiency
 - Wall-plug efficiency
 - Slope efficiency
 - Electron-lattice energy relaxation times

Motivation

• In **Electronic** and **Photonic** devices electrons release the excess energy gained from the applied electric field by:

- exciting other electrons
- emitting phonons or photons

 Equilibrium condition between *P* and the energy loss rate: average electron energies > crystal lattice one → hot-electron populations

• Electronic distributions: Fermi-Dirac functions characterized by temperatures $T_e >> T_L$

• Relevance of including hot-electron distributions in **semiconductor laser modelling** \rightarrow hot electron effects are directly correlated with physical parameters central in the laser theory

Energy balance in QCLs

• Energy relaxation channels in QCL:

- ✤ High thermal resistances
- Limited e-lattice relaxation efficiency

Low frequency THz QCLs

Walther et al. APL 89, 231121

Quantum design:

- Bound-to-continuum scheme
- Two-level injection/depletion module

Laser: Innovatior Technology

• $E_{86} = 7.4 \text{ meV}$; $Z_{86} = 10.1 \text{ nm}$

• E_{1-2,8} ~ 0.6 meV

Two electronic subsystems can be identified:

• Active region: includes the upper laser level and the depletion miniband.

• **The injector**: doublet of closely spaced lowest energy levels.

Experimental approach

• Photoluminescence spectroscopy on the laser front facets

• Extract local lattice and electronic temperatures from PL analysis

- (1) → Low V; Below the threshold for carrier injection into the upper state → most of the electrons are sitting in the injector doublet
- (2-3-4) → Higher V; the energy difference between the injector and the upper state is reduced → additional peaks on the high energy tail of the main PL bands shows that electrons are injected into level 8.

Current density (A/cm²)

Measurement of the electron temperatures:

- Below threshold of alignment
- After injection into the upper state
- Above lasing threshold

Four regions, clearly correlated with features in the transport measurements can be identified.

Current density (A/cm²)

I Below injection into level 8

Efficient ($\tau_{ee} \approx 100$ fs) energy redistribution process between the injector and $M_1 \rightarrow T^e_{inj} \approx T^e_{active}$

•
$$\frac{dE_j}{dt} = \overline{P} - \frac{n_j k}{\tau_{eL}} (T_j^e - T_L)$$

Experimental
$$R_e = \frac{T_{inj}^e}{P} \approx R_L$$

→ Efficient electron-lattice scattering Rate equation:

$$\tau_{eL} = [N_e N k_B (R_e - R_L)] = 0.22 - 0.25 \, ps$$

Current density (A/cm²)

II Above alignment

- The measured electronic temperature corresponds to T^e_{active}
 - Injection in level 8 \rightarrow confirmed by new PL peaks
 - Subband populations in the same quantum wells equilibrate quickly (100-200 fs) to a common T_e
 - Experiments in BTC THz QCLs demonstrate that the miniband and the upper subband share a common T_e

Vitiello et al. APL 89, 021111, (2006).

Current density (A/cm²)

II Above alignment

- Cold *electrons* progressively populate level 8
- *electrons* are scattered elastically or quasielastically with a large excess energy to a lower state
- *electrons* thermalize within their respective subbands at a temperature T^e_{active} > T^e_{inj}

Heating of the upper laser level:

- A comparable amount of injected electrical power is distributed between the two subsystems
- But n_{active} << n_{inj}

Lasing region

Efficient **hot electron cooling** by photon emission \rightarrow Photon emission extracts part of the input power

Further proof: Lasers vs mesas

- Mesa device \rightarrow No evidence of change in the slope $\frac{d(T_{active}^{e} T_{L})}{dJ}$
- Change in the slope $\frac{d(T_{active}^{e} T_{L})}{dJ}$ at the onset of lasing

Sample A (50 µm × 1mm)

Sample B (140 µm × 1mm)

 $J (A/cm^2)$

Present case $kT^{e}_{active} - kT^{e}_{inj} << \Delta_{mb} + \Delta E_{86}$

Hot electron cooling \rightarrow probe of the laser efficiency

• Cooling of hot electrons in the active region is correlated with the internal quantum efficiency of a laser

$$\frac{d(T_{active}^{e} - T_{L})}{dJ} \approx \frac{\tau_{eL}}{qn_{active}k} (\Delta E_{68} + \Delta_{mb}) \qquad S = 0$$

$$\frac{d(T_{active}^{e} - T_{L})}{dJ} = \frac{\tau_{eL}}{qn_{active}k} (h\nu + \Delta_{mb} - h\nu\eta_{int}) \qquad S \neq 0$$

$$\eta_{int} = \frac{\tau_8 \left(1 - \frac{\tau_6}{\tau_{86}} \right)}{\tau_8 \left(1 - \frac{\tau_6}{\tau_{86}} \right) + \tau_6} = \alpha_{tot} \cdot \frac{dS}{dJ} \cdot q$$

Internal quantum efficiency

At increasing T_H , the slope $d(T_{active}^{e}-T_L)/dJ$ above lasing threshold increases \rightarrow laser cooling less effective

Internal quantum efficiency η_{int}

$$\eta_{int} = \left(1 - \frac{d(T_e^{active} - T_L)}{dJ} \frac{n_{active}kq}{\tau_{eL}(h\upsilon + \Delta_{mb})}\right) \frac{(h\upsilon + \Delta_{mb})}{h\upsilon}$$

 $\eta_{d} = \eta_{int} \frac{1}{\alpha_{tot}}$

- Optical testing \rightarrow inherently limited by:
 - the small collection efficiencies of the optical set-ups
 - the high optical beam divergence of metal-metal waveguides
- Alternative approaches → relative change in the differential resistance above and below threshold

$$\left(\eta_{int}=1-\frac{\Delta R}{R}\right)$$

- Due to residual resistances in the device understimation of \approx 40% in the internal quantum efficiency have been obtained

Wall-plug efficiency

$$\eta_{w} = \eta_{\text{int}} \frac{\alpha_{m}}{\alpha_{tot}} \frac{Nh\nu}{e} \frac{1}{V} \left(1 - \frac{J_{th}}{J}\right)$$

Hot electron probe \rightarrow Higher sensitivity, particularly useful in the characterization of terahertz sources with highly diverging beams like **double-metal QCLs**.

Our thermal self-calibrated approach in <u>surface plasmon</u> THz QCLs

• Deviations from the thermal resistance trend in the lasing range \rightarrow $P_{thermal}$ \rightarrow η_W

M.S.Vitiello, et al.APL 90, 191115 (2007)

- The processes observed in the terahertz QCLs are quite general and can be conveniently extended also to other gain media
- Double-heterostructure interband lasers → carrier heating by Auger recombination plays a very fundamental role
 - The hot carrier cooling rate may be much slower than the energy loss rate by phonon emission
 - The excited level temperature increase well above the one of the lattice or the carrier reservoir
 - Less abrupt change of the heating rate at threshold is expected \rightarrow a significant amount of power is extracted from the laser via spontaneous emission processes even below threshold.

- Experimental evidence of a new physical phenomenon characteristic of semiconductor lasers: the cooling of the electrons above the laser threshold for stimulated emission
- Correlation between the hot electron cooling and the internal quantum efficiency of a laser
- Self-calibrated approach to extract the internal quantum efficiency and the wall-plug efficiency in a QCL
- Implications →
 - Inclusion of the electronic temperature in the general theory of semiconductor lasers
 - Hot-electron effects must be fully understood in THz QCL to explore the device physical limits in terms of maximum temperature, wavelength and quantum efficiencies.