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Laser Absorption Spectroscopy

•High sensitivity•High sensitivity
•High selectivity
•N d t ti•Non-destructive
•Fast
•No sample preparation
•Remote sensingg
•Field deployable





Spectroscopic techniques for trace-gas detection
Multipass cell spectroscopy

Cavity Ring Down Spectroscopy (CRDS) 
Cavity Enhanced Spectroscopy

LASER SOURCE

Absorption α

Laser beam

Photoaccoustic Spectroscopy 

Microphone

Remote sensingg



Example Molecular Absorption Spectra 
within Mid-IR “Atmospheric Windows”

CO: 4.66 μm CH2O: 3.6 μm

CO2: 4.2 μm

COS: 4.86 μm

NO: 5.26 μm

μ

CH4: 3.3 μm

3.1 μm5.5  μm

NH3: 10.6 μm O3: 10 μm
N20, CH4: 7.66 μm

12.5 μm 7.6 μm

Source: HITRAN 2000 database



Example Absorption Spectra of Broadband Absorbing Molecules
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Breath Biomarkers in Humans
As many as 400 different molecules in breath,
many with well defined biochemical pathways 

BROADBAND
Compound Concentration Physiological basis/Pathology Indication 

Acetaldehyde ppb Ethanol metabolism 
Acetone ppm Decarboxylation of acetoacetate, diabetes 
Ammonia ppb protein metabolism, liver and renal disease 
C b  di id  % P d t f i ti  H li b t  l i 

ABSORBERS

Carbon dioxide % Product of respiration, Heliobacter pylori 
Carbon disulfide ppb Gut bacteria, schizophrenia  
Carbon monoxide ppm Production catalyzed by heme oxygenase 
Carbonyl sulfide ppb Gut bacteria, liver disease 
Ethane ppb Lipid peroxidation and oxidative stress 
Ethanol ppb Gut bacteria Ethanol ppb Gut bacteria 
Ethylene ppb Lipid peroxidation, oxidative stress, cancer 
Hydrocarbons ppb Lipid peroxidation/metabolism 
Hydrogen ppm Gut bacteria 
Isoprene ppb Cholesterol biosynthesis 
Methane ppm Gut bacteria Methane ppm Gut bacteria 
Methanethiol ppb Methionine metabolism 
Methanol ppb Metabolism of fruit 
Methylamine ppb Protein metabolism 
Nitric oxide ppb Production catalyzed by nitric oxide synthase 
Oxygen % Required for normal respiration Oxygen % Required for normal respiration 
Pentane ppb Lipid peroxidation, oxidative stress 
Water % Product of respiration 

 
 
 Terence Risby, Johns Hopkins University



Mid-IR Source Requirements for Laser Spectroscopy

SPECTROSCOPIC GOALS REQUIRED LASER 
PERFORMANCE

Sensitivity (% to ppt) Wavelength, Power

Selectivity (Spectral Resolution) Single Mode Operation and Narrow 
LinewidthLinewidth

Multiple  Molecular Targets,  
Broadband Absorbers

Tunable Wavelength

Remote sensing (directionality) or 
High-Finesse Cavity (mode-matching)

High Beam Quality

Rapid Data Acquisition Fast Wavelength Tuning/ Modulation 
capabilities

A t bl N i liAutonomous, no consumables No cryogenic cooling

Field deployment Compact & Robust



L l th th Mid IR

Quantum Cascade Laser: Basic Facts
• Laser wavelengths cover the Mid-IR range 

(~3 − 24μm, band structure engineering)
• High laser power

C. Gmachl et al. Nature, v. 145,  883  (2002)

High laser power 
(>500mW cw, >5W peak for pulsed)

• Tunable single frequency operationu ab e s g e eque cy ope at o
tuning: DFB (up to ~10 cm-1), EC (>200 cm-1) 

• High quantum efficiency 
(Cascading: 1 electron = N photons)

• High reliability, long lifetime
R. Maulini, et al. APL. 88, 201113 (2006) 

• Room temperature operation 
(CW: above RT)

240 cm-1

• Compact



Tunable external cavity QCL based spectrometer
ABSORPTION GAS CELLABSORPTION GAS CELL
PHOTOACCOUSTIC CELL

or 
AIR SPACED ETALON
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• High resolution mode-hop free wavelength tuning 
PZT controlled EC-length
PZT t ll d ti lPZT controlled grating angle 
QCL current control

• Motorized coarse grating angle tuning 
• Vacuum tight QCL enclosure with build-in 3D lens 

iti TEC l li hill d t li

~50Hz

2-3 sec./scan

positioner + TEC laser cooling + chilled water cooling



Wide Wavelength Tuning of a 5.3μm EC-QCL

• Coarse wavelength tuning of 
155 cm-1 is performed by 
varying diffraction gratingTOTAL TUNING RANGE:   155 cm-1
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G. Wysocki et al. APB92 p.305 (2008)

In collaboration with: 

~4 mm~4 mm
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EC-QCL emitting at λ = 8.4 μm

PEC-opt >100mW (cw)

AR coating:

CW operation

AR coating:
RAR≈ ~10-4

Tunability 167 cm-1Tunability 167 cm
@8.4 μm
14 % of the center wavelength 

In collaboration with: 



EC-QCL Noise
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• Strong feedback gives >30dB 
Frequency [M Hz]
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g g
SMSR

The excess noise has direct 
Impact on QCL-based systems 
performanceLN2 DFB-QCL performance
FP “close to threshold”  is not the 
best way to obtain single-mode 
lasing

In collaboration with Dr. Damien Weidmann 
Rutherford Appleton Labs, UK



EC-QCL Pros & Cons

PROS:
B d t i ( ti l th fl ibilit )•Broad tuning (operation wavelength flexibility)

•High power (as for most spectroscopic applications)
•Good beam quality
•Narrow linewidth
•Lower excess noise

CONS:
•Slow tuningSlow tuning 
•Power fluctuations (especially in BB coarse tuning)
•Non-monolitic (requires external optics)



Available Applications of EC-QCLs
E ll f iExcellent performance in:

•Applications with critical wavelength restrictions
•Applications with pure intensity modulation

• Low resolution
•QCL current (laser linewidth ≈ grating bandwidth)

• High resolution (available with external AM modulation only)
•Chopper•Chopper 
• AOM, EOM (difficult and expensive in mid-IR)

•Applications with external wavelength modulation
• AOM, EOM (difficult and expensive in mid-IR), ( p )

•Applications with external modulation/detection means
•“Sample” modulation (Zeeman, Faraday, Stark modulation)
• Heterodyne spectroscopy

CRDS• CRDS

Poor performance in:
• Applications with direct wavelength modulation:

• Most popular: LAS, WM-LAS, FM-LAS, 
• Photoacoustic detection (WM-PAS, WM-QEPAS)

•High-res applications with direct AM modulation
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QCL based Quartz-Enhanced Photoacoustic Gas Sensor

QEPAS characteristics:

• High sensitivity (ppm to ppb)
• Excellent dynamic range
• Immune to environmental noise
• Ultra-small sample volume (< 1 mm3) 
• Sensitivity is limited by the fundamental 

thermal quartz tuning fork (QTF) noise
• Compact, rugged and low cost
• Potential for trace gas sensor networks

R. Lewicki, G. Wysocki, A.A. Kosterev, and F.K. Tittel,  Opt. Express 15, 7357 (2007)



QEPAS ethanol spectrum between 1825 & 1980 cm-1
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Spectroscopy of Broadband Absorbers with 
Widely Tunable EC-QCL at λ = 8.4 μm

QEPAS concentration measurement of 
Freon 125 (5ppm mixture in N2) 

 5 ppm of Freon125 in N2 - measured spectrum
fit by reference spectrum (PNNL database)

QEPAS concentration measurement of 
a Freon 125 and acetone mixture
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• Minimum detection limit (1σ) of
~3 ppb was obtained for Freon 
125 with an average laser power
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• Wide tunability enables excellent 
molecular selectivity for broad 125 with an average laser power 

of 6.6 mW band absorbers

R. Lewicki, G. Wysocki, A.A. Kosterev, and F.K. Tittel,  Opt. Express 15, 7357 (2007)



Example Absorption Spectra of Broadband Absorbing Molecules
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Example Molecular Absorption Spectra 
within Mid-IR “Atmospheric Windows”
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High resolution EC-QCL based QEPAS

External AM:

•QTF used as a mechanical chopper 
at f=~32kHz
N hi i t d ith th l•No chirp associated with the laser 
current modulation

•High resolution mode-hop-free 
tuning is possible





Available Applications of EC-QCLs
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Poor performance in:
• Applications with direct wavelength modulation:

• Most popular: LAS, WM-LAS, FM-LAS, 
• Photoacoustic detection (WM-PAS, WM-QEPAS)

•High-res applications with direct AM modulation
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EC-QCL Based Faraday Rotation Spectrometer

λ/4 -plate 

• EC-QCL  Operating at 5.3μm – NO Fundamental Band
• 44cm effective optical pathlength44cm effective optical pathlength
• Rochon Polarizer Extinction Ratio <10-5

• Equivalent minimum detectable absorption coefficient ~1.4 × 10-9 cm-1

• Not sensitive to water interference
• Sensitivity Not Limited by Interference Fringesy y g
• Gas Cell Volume (~ 250ml) 
• Easy and Robust Optical Alignment
• Continuous NO Monitoring (Absorption Line Locking enabled with mode-hop free tuning using Zeeman 

Modulation at 3rd harmonic)



High Resolution Faraday Spectroscopy of NO at λ = 5.33μm
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EC-QCL Based Heterodyne Radiometry
Beam splitterChopper (f)

Radiation source
(Black-body, Sun etc.)

p

Photodetector
Chopper (f)

Filter
RF

Fixed 
LO

Tunable
LO

RF detector  

Local
Oscillator

(QCL, EC-QCL)

RF 
spectrum 
analyzer

Lock inLock-in
(f)

In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK



EC-QCL Based Heterodyne Radiometry
Sensitivity shot noise limitedSensitivity shot noise limited

Tunable LO / Fixed LO + snapshot of RF spectrum

Spectral resolution/Instrumental linewidth electronic filters

Passive remote sensing Absorption/Emission 

Spatial resolution Coherent FoV

Polarization sensitive detection
In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK



EC-QCL Based Heterodyne Radiometry
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In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK



How to improve the EC-QCL tuning speed?

Avoid low frequency mechanical vibration resonances

Use small displacements and low inertia scanning elements (or EOM 
AOM beam steering next step)

Beam steering at KHz rates is possible with a compact piezo-actuated 
tilt platform (mirror steering)

New approach to achieve KHz scanning rates:
Replace the slow translation stages with high speed tilt-platforms 
Folded laser cavity arrangement 
Mode-hop-free tuning p g



Folded ECDL tuning concept (configuration #1 and #2)

Change in the optical path;
ΔL= Δx tan(θ) = L tan(Δϕ) tan(θ)

Configuration #1 “Dual actuator single-folded 
Littrow cavity arrangement “:
• The grating is mounted on similar tilt 
platform for precise (independent) grating 

Δx

ΔL

High-speed
Tilt or FIXED
Grating

angle tuning

Advantages: fully electronically-controlled 
wavelength tuning 
Li it ti i i l t f th

25mm

Δϕ≈0

High-speed

Grating
θ

θ

Limitations: requires precise placement of the 
diffraction grating on the tilt actuator 

QCL

(~25mm)

High-speed
Tilt Mirror

θ

Output 
Beam

Configuration #2 “Single actuator single-
folded Littrow cavity arrangement “:
• The grating is fixed

optical pathRotation:
½ Δϕ

Advantages: requires only one actuator, offers 
robust system with simplified system adjustment 
Limitations: requires careful selection of the 
diffraction grating (blaze angles >45deg.)

The output  laser beam has to be extracted from a second laser facet



ECDL tuning concept (configuration #2)
Change in the optical path;
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ΔL= Δx tan(θ) = L1 tan(Δϕ) tan(θ)

Ltot=L1+L2
±150mrad

Simulation at 9.7μm
Grating:  150g/mm

Grating angle tuning

Cavity length tuning⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= tan

L
La totθ

-0.15 -0.10 -0.05 0.05 0.10 0.15

-1.μ10-6

-5.μ10-7

ΔL

±150mrad⎟
⎠

⎜
⎝ 1L

1.μ10-8

2.μ10-8

-1.5μ10-6
Δx

ΔL

Δ 0

FIXED Grating

θ

±1mrad
±20nm (~4cm-1) 

Grating angle tuning

Cavity length tuning

-0.002 -0.001 0.001 0.002

2 μ10-8

-1.μ10-8

QCL

L1

Δϕ≈0

High-speed
Tilt Mirror

θ

y g g

-2.μ10QCL

L2
optical pathRotation:

½ Δϕ

Output 
Beam

0 002 0 001 0 001 0 002

2.μ10-10

4.μ10-10

Tuning error:
<0.05cm-1

<FSR-EC
½ Δϕ

Figure : Schematic of the proposed new EC-QCL folded cavity tuning 
scheme
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New design of fast broadly tunable EC-QCLs

•New optical configuration
Folded cavity (configuration #1)

•Fast tuning capabilities:
Coarse Broadband ScanningCoarse Broadband Scanning

(~55 cm-1 @5μm ) up to 5 KHz
(compared to available technologies <10Hz)

High resolution mode-hop 
free tuning ( 3 2 cm-1 @5 m )free tuning (~3.2 cm-1 @5μm )

up to 5 KHz 
(compared to available technologies 100-200 Hz)
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To-date:
Manual coarse tuning 47cm-1Manual coarse tuning 47cm
Fast coarse electrical tuning within 
8cm-1 at KHz rates (PZT resonance 
at 6.5KHz)

NEXT STEPS:
Mode-hop-free tuning
Spectroscopic applications



Summary & Future Directions

• Widely tunable, continuous wave and thermoelectrically cooled EC-QCLs 
were demonstrated with:

• 15% tunability,
• >100 mW o tp t po er• >100 mW output power
• high resolution (<0.001cm-1) mode-hop-free tuning capabilities 

• Number of high sensitivity spectroscopic sensing applications are enabled byNumber of high sensitivity spectroscopic sensing applications are enabled by 
the EC-QCL technology. Examples given:

• Photoaccoustic detection
• Faraday Modulation Spectroscopy
• H t d d t ti• Heterodyne detection

• First tests of a high-speed EC-QCL system were demonstrated with KHz 
scanning capabilities

Future directions:
– Fast mode-hop-free EC-QCL 
– new applications in laser based trace gas sensing

Sensitive concentration measurements of broadband absorbers in particular VOCs and HCsSensitive concentration measurements of broadband absorbers, in particular VOCs and HCs
Multi-species detection



Acknowledgements

• Frank K. Tittel
• Robert F. Curl
• Damien Weidmann

QC-lasers:
• Jerome Faist
• Federico Capasso
• Claire Gmachl

DoE STTR: Aerodyne IncDoE STTR: Aerodyne Inc.
QCL/lens assembly: Daylight Solutions Inc.




