

External Cavity Quantum Cascade Lasers: Recent Advances and Applications

Gerard Wysocki

Princeton University, Electrical Engineering Department, Princeton, NJ

- Motivation
- Quantum Cascade Lasers (QCLs)
- External Cavity QCLs
 - > Performance characteristics
 - Advantages and disadvantages in spectroscopic sensing
- Example Applications of EC-QCLs
- Preliminary results and tests of a new EC-QCL design
- Summary and Future Directions

Financial Support: DoE-STTR and NSF - MIRTHE

IQCLSW '08

OUTLINE

September 14-19, 2008 Monte Verita, Switzerland

Trace Gas Sensing Applications

Urban and Industrial Emission Measurements

Fundamental Science

Industrial Process Control

Applications in Medicine and Life Sciences

Law Enforcement and National Security

Laser Absorption Spectroscopy

- High sensitivity
- High selectivity
- Non-destructive
- Fast
- No sample preparation
- Remote sensing
- Field deployable

CO₂ absorption spectrum

Spectroscopic techniques for trace-gas detection

Example Molecular Absorption Spectra within Mid-IR "Atmospheric Windows"

Source: HITRAN 2000 database

Example Absorption Spectra of Broadband Absorbing Molecules

Source: PNNL spectroscopic database

Breath Biomarkers in Humans

As many as 400 different molecules in breath, many with well defined biochemical pathways

BROADBAND			
ABSORBERS	Compound	Concentration	Physiological basis/Pathology Indication
	Acetaldehyde	ppb	Ethanol metabolism
	Acetone	ppm	Decarboxylation of acetoacetate, diabetes
	Ammonia	ppb	protein metabolism, liver and renal disease
	Carbon dioxide	%	Product of respiration, Heliobacter pylori
	Carbon disulfide	ppb	Gut bacteria, schizophrenia
	Carbon monoxide	ppm	Production catalyzed by heme oxygenase
	Carbonyl sulfide	ppb	Gut bacteria, liver disease
	Ethane	ppb	Lipid peroxidation and oxidative stress
	Ethanol	ppb	Gut bacteria
	Ethylene	ppb	Lipid peroxidation, oxidative stress, cancer
	Hydrocarbons	ppb	Lipid peroxidation/metabolism
	Hydrogen	ppm	Gut bacteria
	Isoprene	ppb	Cholesterol biosynthesis
	Methane	ppm	Gut bacteria
	Methanethiol	ppb	Methionine metabolism
	Methanol	ppb	Metabolism of fruit
	Methylamine	ppb	Protein metabolism
	Nitric oxide	ppb	Production catalyzed by nitric oxide synthase
	Oxygen	%	Required for normal respiration
	Pentane	ppb	Lipid peroxidation, oxidative stress
	Water	%	Product of respiration

.

Mid-IR Source Requirements for Laser Spectroscopy

SPECTROSCOPIC GOALS	REQUIRED LASER PERFORMANCE
Sensitivity (% to ppt)	Wavelength, Power
Selectivity (Spectral Resolution)	Single Mode Operation and Narrow Linewidth
Multiple Molecular Targets, Broadband Absorbers	Tunable Wavelength
Remote sensing (directionality) or High-Finesse Cavity (mode-matching)	High Beam Quality
Rapid Data Acquisition	Fast Wavelength Tuning/ Modulation capabilities
Autonomous, no consumables	No cryogenic cooling
Field deployment	Compact & Robust

Quantum Cascade Laser: Basic Facts

- Laser wavelengths cover the Mid-IR range (~3 – 24µm, band structure engineering)
- High laser power

(>500mW cw, >5W peak for pulsed)

- Tunable single frequency operation tuning: DFB (up to ~10 cm⁻¹), EC (>200 cm⁻¹)
- High quantum efficiency (Cascading: 1 electron = N photons)
- High reliability, long lifetime
- Room temperature operation (CW: above RT)
- Compact

Tunable external cavity QCL based spectrometer

- High resolution mode-hop free wavelength tuning
 - PZT controlled EC-length
 - PZT controlled grating angle
- **≻** ~50Hz

QCL current control

- Motorized coarse grating angle tuning 2-3 sec./scan
- Vacuum tight QCL enclosure with build-in 3D lens positioner + TEC laser cooling + chilled water cooling

Wide Wavelength Tuning of a $5.3\mu m$ EC-QCL

In collaboration with:

EC-QCL emitting at λ = 8.4 μ m

EC-QCL emitting at λ = 8.4 μ m

EC-QCL Noise

- EC-QCL outperforms DFB-QCLs in terms of RF noise figure
- EC feedback reduces laser excess noise
 - ~L_{QCL}/L_{EC} reduction of injection current fluctuations impact
 - Strong feedback gives >30dB SMSR
 - The excess noise has direct Impact on QCL-based systems performance
- FP "close to threshold" is not the best way to obtain single-mode lasing

In collaboration with Dr. Damien Weidmann Rutherford Appleton Labs, UK

EC-QCL Pros & Cons

PROS:

- Broad tuning (operation wavelength flexibility)
- High power (as for most spectroscopic applications)
- Good beam quality
- Narrow linewidth
- Lower excess noise

CONS:

- Slow tuning
- Power fluctuations (especially in BB coarse tuning)
- Non-monolitic (requires external optics)

Available Applications of EC-QCLs

Excellent performance in:

Applications with critical wavelength restrictions

- Applications with pure intensity modulation
 - Low resolution
 - •QCL current (laser linewidth \approx grating bandwidth)
 - High resolution (available with external AM modulation only)
 Chopper
 - AOM, EOM (difficult and expensive in mid-IR)

Applications with external wavelength modulation

- AOM, EOM (difficult and expensive in mid-IR)
- Applications with external modulation/detection means
 - •"Sample" modulation (Zeeman, Faraday, Stark modulation)
 - Heterodyne spectroscopy
 - CRDS

Poor performance in:

- Applications with direct wavelength modulation:
 - Most popular: LAS, WM-LAS, FM-LAS,
 - Photoacoustic detection (WM-PAS, WM-QEPAS)
- High-res applications with direct AM modulation

Available Applications of EC-QCLs

Excellent performance in:

Applications with critical wavelength restrictions

Applications with pure intensity modulation

- Low resolution
 - •QCL current (laser linewidth \approx grating bandwidth)
- High resolution (available with external AM modulation only)
 Chopper
 - AOM, EOM (difficult and expensive in mid-IR)
- Applications with external wavelength modulation
 - AOM, EOM (difficult and expensive in mid-IR)
- Applications with external modulation/detection means
 - •"Sample" modulation (Zeeman, Faraday, Stark modulation)
 - Heterodyne spectroscopy
 - CRDS

Poor performance in:

- Applications with direct wavelength modulation:
 - Most popular: LAS, WM-LAS, FM-LAS,
 - Photoacoustic detection (WM-PAS, WM-QEPAS)
- •High-res applications with direct AM modulation

QCL based Quartz-Enhanced Photoacoustic Gas Sensor

QEPAS characteristics:

- High sensitivity (ppm to ppb)
- Excellent dynamic range
- Immune to environmental noise
- Ultra-small sample volume (< 1 mm³)
- Sensitivity is limited by the fundamental thermal quartz tuning fork (QTF) noise
- Compact, rugged and low cost
- Potential for trace gas sensor networks

R. Lewicki, G. Wysocki, A.A. Kosterev, and F.K. Tittel, Opt. Express 15, 7357 (2007)

QEPAS ethanol spectrum between 1825 & 1980 cm⁻¹

- Reference spectrum from the PNNL spectral database (black line).
- Sharp features on the ethanol spectrum correspond to the water absorption lines.
- Blue line depicts water absorption spectrum simulated using HITRAN database.
- Estimated resolution of a coarse wavelength scan ~1.2cm⁻¹

Spectroscopy of Broadband Absorbers with Widely Tunable EC-QCL at λ = 8.4 μ m

Example Absorption Spectra of Broadband Absorbing Molecules

Source: PNNL spectroscopic database

Example Molecular Absorption Spectra within Mid-IR "Atmospheric Windows"

High resolution EC-QCL based QEPAS

Gas handling system

External AM:

- QTF used as a mechanical chopper at *f*=~32kHz
- No chirp associated with the laser current modulation
- High resolution mode-hop-free tuning is possible

High resolution spectroscopy with a $5.3\mu m$ EC-QCL

 Mode hop free scan of up to ~2.5 cm⁻¹ with a resolution <0.001cm⁻¹ (30MHz) can be performed anywhere within the tuning range

G. Wysocki et al. APB92 p.305 (2008)

Available Applications of EC-QCLs

Excellent performance in:

Applications with critical wavelength restrictions

Applications with pure intensity modulation

- Low resolution
 - •QCL current (laser linewidth \approx grating bandwidth)
- High resolution (available with external AM modulation only)
 Chopper
 - AOM, EOM (difficult and expensive in mid-IR)

Applications with external wavelength modulation

- AOM, EOM (difficult and expensive in mid-IR)
- •Applications with external modulation/detection means
 - •"Sample" modulation (Zeeman, Faraday, Stark modulation)
 - Heterodyne spectroscopy
 - CRDS

Poor performance in:

- Applications with direct wavelength modulation:
 - Most popular: LAS, WM-LAS, FM-LAS,
 - Photoacoustic detection (WM-PAS, WM-QEPAS)
- •High-res applications with direct AM modulation

High resolution spectroscopy with a $5.3\mu m EC-QCL$

 Mode hop free scan of up to ~2.5 cm⁻¹ with a resolution <0.001cm⁻¹ (30MHz) can be performed anywhere within the tuning range

In collaboration with:

Available Applications of EC-QCLs

Excellent performance in:

Applications with critical wavelength restrictions

Applications with pure intensity modulation

- Low resolution
 - •QCL current (laser linewidth \approx grating bandwidth)
- High resolution (available with external AM modulation only)
 Chopper
 - AOM, EOM (difficult and expensive in mid-IR)

Applications with external wavelength modulation

• AOM, EOM (difficult and expensive in mid-IR)

•Applications with external modulation/detection means

- •"Sample" modulation (Zeeman, Faraday, Stark modulation)
- Heterodyne spectroscopy
- CRDS

Poor performance in:

- Applications with direct wavelength modulation:
 - Most popular: LAS, WM-LAS, FM-LAS,
 - Photoacoustic detection (WM-PAS, WM-QEPAS)
- •High-res applications with direct AM modulation

EC-QCL Based Faraday Rotation Spectrometer

- EC-QCL Operating at $5.3\mu m NO$ Fundamental Band
- 44cm effective optical pathlength
- Rochon Polarizer Extinction Ratio <10⁻⁵
- Equivalent minimum detectable absorption coefficient → ~1.4 × 10⁻⁹ cm⁻¹
- Not sensitive to water interference
- Sensitivity Not Limited by Interference Fringes
- Gas Cell Volume (~ 250ml)
- Easy and Robust Optical Alignment
- Continuous NO Monitoring (Absorption Line Locking enabled with mode-hop free tuning using Zeeman Modulation at 3rd harmonic)

- Minimum detection limit (1σ) of ~5.4 ppb
- MDL primarily limited by the detector noise
- Minimum detection limit (1σ) of ~ 0.38 ppb
- MDL primarily limited by the quality of polarizers

Excellent dynamic range

Continuous Monitoring of NO

- TEC-cooled detector allows continuous unattended operation of the sensor at the expense of lower MDL
- Preliminary results show excellent system stability (>1000 sec.)
- Suppression of an electromagnetic noise will further improve MDL

Available Applications of EC-QCLs

Excellent performance in:

Applications with critical wavelength restrictions

- Applications with pure intensity modulation
 - Low resolution
 - •QCL current (laser linewidth \approx grating bandwidth)
 - High resolution (available with external AM modulation only)
 Chopper
 - AOM, EOM (difficult and expensive in mid-IR)

Applications with external wavelength modulation

• AOM, EOM (difficult and expensive in mid-IR)

Applications with external modulation/detection means

- •"Sample" modulation (Zeeman, Faraday, Stark modulation)
- Heterodyne spectroscopy
- CRDS

Poor performance in:

- Applications with direct wavelength modulation:
 - Most popular: LAS, WM-LAS, FM-LAS,
 - Photoacoustic detection (WM-PAS, WM-QEPAS)
- •High-res applications with direct AM modulation

EC-QCL Based Heterodyne Radiometry

In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK

EC-QCL Based Heterodyne Radiometry

 \succ Sensitivity \rightarrow shot noise limited

$$NEP = \frac{hv}{\eta} \sqrt{\frac{B}{\tau}} \qquad \begin{array}{l} \lambda = 10 \ \mu\text{m} \\ \text{B} = 100 \ \text{MHz} \Rightarrow \text{NEP} = 4.10^{-16}\text{W} \\ \tau = 1\text{s} \end{array}$$

Tunable LO / Fixed LO + snapshot of RF spectrum

Spectral resolution/Instrumental linewidth \rightarrow electronic filters $\frac{\Delta\lambda}{\lambda} < 10^{-6}$

 \geq Passive remote sensing \rightarrow Absorption/Emission

Spatial resolution
$$\rightarrow$$
 Coherent FoV
 $FoV = \frac{4\lambda}{\pi D}$ $\lambda = 10 \ \mu m$
 $D = 10 \ cm \Rightarrow FoV = 0.13 \ mrad$

Polarization sensitive detection

In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK

EC-QCL Based Heterodyne Radiometry

In collaboration with Dr. Damien Weidmann @ Rutherford Appleton Labs in UK

> Avoid low frequency mechanical vibration resonances

✓ Use small displacements and low inertia scanning elements (or EOM AOM beam steering → next step)

Beam steering at <u>KHz rates</u> is possible with a <u>compact piezo-actuated</u> <u>tilt platform</u> (mirror steering)

New approach to achieve KHz scanning rates:

- Replace the slow translation stages with high speed tilt-platforms
- Folded laser cavity arrangement
- Mode-hop-free tuning

Folded ECDL tuning concept (configuration #1 and #2)

Change in the optical path; $\Delta L = \Delta x \tan(\theta) = L \tan(\Delta \phi) \tan(\theta)$

Configuration #1 "Dual actuator single-folded Littrow cavity arrangement ":

• The grating is mounted on similar tilt platform for precise (independent) grating angle tuning

<u>Advantages</u>: fully electronically-controlled wavelength tuning <u>Limitations</u>: requires precise placement of the diffraction grating on the tilt actuator

Configuration #2 "Single actuator singlefolded Littrow cavity arrangement ":

• The grating is fixed

<u>Advantages</u>: requires only one actuator, offers robust system with simplified system adjustment <u>Limitations</u>: requires careful selection of the diffraction grating (blaze angles >45deg.)

The output laser beam has to be extracted from a second laser facet

ECDL tuning concept (configuration #2)

New design of fast broadly tunable EC-QCLs

- New optical configuration Folded cavity (configuration #1)
 Fast tuning capabilities:
 - Coarse Broadband Scanning
 (~55 cm⁻¹ @5µm) <u>up to 5 KHz</u>
 (compared to available technologies <10Hz)
 - High resolution mode-hop free tuning (~3.2 cm⁻¹ @5µm)
 <u>up to 5 KHz</u>

(compared to available technologies 100-200 Hz)

Fast broadly tunable EC-QCL @9.7µm under test

To-date:

Manual coarse tuning 47cm⁻¹
 Fast coarse electrical tuning within 8cm⁻¹ at KHz rates (PZT resonance at 6.5KHz)

NEXT STEPS:

- Mode-hop-free tuning
- Spectroscopic applications

Summary & Future Directions

- Widely tunable, continuous wave and thermoelectrically cooled EC-QCLs were demonstrated with:
 - 15% tunability,
 - >100 mW output power
 - high resolution (<0.001cm⁻¹) mode-hop-free tuning capabilities
- Number of high sensitivity spectroscopic sensing applications are enabled by the EC-QCL technology. Examples given:
 - Photoaccoustic detection
 - Faraday Modulation Spectroscopy
 - Heterodyne detection
- First tests of a high-speed EC-QCL system were demonstrated with KHz scanning capabilities

Future directions:

- Fast mode-hop-free EC-QCL
- new applications in laser based trace gas sensing
 - Sensitive concentration measurements of broadband absorbers, in particular VOCs and HCs
 - Multi-species detection

Acknowledgements

- Frank K. Tittel
- Robert F. Curl
- Damien Weidmann

QC-lasers:

- Jerome Faist
- Federico Capasso
- Claire Gmachl

DoE STTR: Aerodyne Inc.

QCL/lens assembly: Daylight Solutions Inc.